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ix

Introduction

An old joke tells of a tourist, lost in New York City, who stops a passerby to ask, 
“How do I get to Carnegie Hall?” The New Yorker’s answer comes back quickly: 
“Practice, practice, practice!” The joke may be silly, but it contains a truth. No 
musician performs on the stage of a renowned concert hall without years of daily 
and diligent practice. No dancer steps out on stage without hours in the rehearsal 
hall, and no athlete takes to the field or the court without investing time and sweat 
drilling on the skills of his or her sport. 

Math has a lot in common with music, dance, and sports. There are skills to 
be learned and a sequence of activities you need to go through if you want to be 
good at it. You don’t just read math, or just listen to math, or even just understand 
math. You do math, and to learn to do it well, you have to practice. That’s why 
homework exists, but most people need more practice than homework provides. 
That’s where Practice Makes Perfect Algebra comes in. 

When you start your formal study of algebra, you take your first step into the 
world of advanced mathematics. One of your principal tasks is to build the reper-
toire of tools that you will use in all future math courses and many other courses 
as well. To do that, you first need to understand each tool and how to use it, and 
then how to use the various tools in your toolbox in combination. 

The almost 1000 exercises in this book are designed to help you acquire the 
skills you need, practice each one individually until you have confidence in it, and 
then combine various skills to solve more complicated problems. Since it’s also 
important to keep your tools in good condition, you can use Practice Makes Per-
fect Algebra to review. Reminding yourself of the tools in your toolbox and how to 
use them helps prepare you to face new tasks that require you to combine those 
tools in new ways. 

One tool that continues to grow in importance is the calculator, specifically, 
the graphing calculator. Generations of students learned algebra without using 
any sort of calculator, and if you do not have access to one, you can still learn all 
the algebra you need. As calculators became available, they provided the opportu-
nity to explore ideas without worrying about whether the arithmetic would get 
too difficult. The rise of graphing calculators means that you can investigate prop-
erties of functions and their graphs without spending lots of time drawing those 
graphs by hand. 

Throughout this book, you’ll see “Calculator Notes.” These are ideas on how 
a graphing calculator might help you check your work, or solve a problem when 
you’re stuck. These tips are not meant to replace you learning the skills and doing 
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	 x	 Introduction

the work. That will always be essential. The Notes are based on a commonly used graphing cal-
culator, which is sometimes introduced in algebra. If you have one, you might be interested in the 
Notes. If you don’t have one, there’s no need to rush to get one. 

With patience and practice, you’ll find that you’ve assembled an impressive set of tools and 
that you’re confident about your ability to use them properly. The skills you acquire in algebra will 
serve you well in other math courses and in other disciplines. Be persistent. You must keep work-
ing at it, bit by bit. Be patient. You will make mistakes, but mistakes are one of the ways we learn, 
so welcome your mistakes. They’ll decrease as you practice, because practice makes perfect. 
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1

In arithmetic, we learn to work with numbers: adding, subtracting, multiplying, 
and dividing. Algebra builds on that work, extends it, and reverses it. Algebra 
looks at the properties of numbers and number systems, introduces the use of 
symbols called variables to stand for numbers that are unknown or changeable, 
and develops techniques for finding those unknowns. 

The real numbers
The real numbers include all the numbers you encounter in arithmetic. The natural, 
or counting, numbers are the numbers you used as you learned to count: {1, 2, 3, 4, 
5, …}. Add the number 0 to the natural numbers and you have the whole numbers: 
{0, 1, 2, 3, 4, …}. The whole numbers together with their opposites form the integers, 
the positive and negative whole numbers and 0: {…, −3, −2, −1, 0, 1, 2, 3, …}. 

There are many numbers between each pair of adjacent integers, however. 
Some of these, called rational numbers, are numbers that can be expressed as the 
ratio of two integers, that is, as a fraction. All integers are rational, since every 
integer can be written as a fraction by giving it a denominator of 1. Rational num-

bers have decimal expansions that either terminate (like 5
2

2 5= . ) or infinitely  

repeat a pattern (like 1
3

0 33333 0 3= =. . ).

There are still other numbers that cannot be expressed as the ratio of two 
integers, called irrational numbers. These include numbers like p and the square 
root of 2 (and the square root of many other integers). You may have used deci-
mals to approximate these, but irrational numbers have decimal representations 
that continue forever and do not repeat. For an exact answer, leave numbers in 
terms of p or in simplest radical form. When you try to express irrational num-
bers in decimal form, you’re forced to cut the infinite decimal off, and that means 
your answer is approximate.

Arithmetic to algebra ·1·

Tools in this chapter:

◆	 Understand how our number system works
◆	 Learn the rules for performing common operations
◆	 Write and evaluate numerical and variable expressions
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	 2	 practice makes perfect  Algebra I

The real numbers include both the rationals and the irrationals. The number line gives a 
visual representation of the real numbers (see Figure 1.1). Each point on the line corresponds to a 
real number. 

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

      Figure 1.1  The real number line.

1·1
EXERCISE

For each number given, list the sets of numbers into which the number fits (naturals, wholes, 
integers, rationals, irrationals, or reals).

1.	 17.386	   6.  493

2.	 −5	   7.  −17.5

3.	 2
5

 	   8.  73 874.

4.	 0	   9. 
123

41−
5.	 7  	 10.  p

For 11–20, plot the numbers on the real number line and label the point with the appropriate letter. Use the 
following figure for your reference.

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

11.  A = 4.5	 16.  F = − 20  

12.  B = 10  	 17.  G = 
−46

5
 

13.  C = −2.75	 18.  H = 7.25 

14.  D = 0.1	 19.  I = −6
1
3

15.  E = 
25
4

 	 20.  J = 8.9

Properties of real numbers 
As you learned arithmetic, you also learned certain rules about the way numbers behave that 
helped you do your work more efficiently. You might not have stopped to put names to those 
properties, but you knew, for example, that 4 + 5 was the same as 5 + 4, but 5 − 4 did not 
equal 4 − 5. 

The commutative and associative properties are the rules that tell you how you can rearrange 
the numbers in an arithmetic problem to make the calculation easier. The commutative property 
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	 Arithmetic to Algebra	 3

tells you when you may change the order, and the associative property tells you when you can 
regroup. There are commutative and associative properties for addition and for multiplication. 

Commutative Property for Addition: a + b = b + a    [Example: 5 + 4 = 4 + 5]
Commutative Property for Multiplication: a × b = b × a    [Example: 3 × 5 = 5 × 3]
Associative Property for Addition: (a + b) + c = a + (b + c)    [Example: (3 + 4) + 5 = 3 + (4 + 5)]
Associative Property for Multiplication: (a × b) × c = a × (b × c)	 [Example: (2 × 3) × 4 = 2 × (3 × 4)]

Two other properties of the real numbers sound obvious, but we’d be lost without them. The 
identity properties for addition and multiplication say that there is a real number—0 for addition 
and 1 for multiplication—that doesn’t change anything. When you add 0 to a number or multiply 
a number by 1, you end up with the same number. 

Identity for Addition: a + 0 = a
Identity for Multiplication: a × 1 = a, a ≠ 0

The inverse properties guarantee that whatever number you start with, you can find a num-
ber to add to it, or to multiply it by, to get back to the identity. 

Inverse for Addition: a + −a = 0	 [Example: 4 + −4 = 0]

Inverse for Multiplication: a × 1
a

 = 1, a ≠ 0	 [Example: 2 1
2

1× = ]

Notice that 0 doesn’t have an inverse for multiplication. That’s because of another property 
you know but don’t often think about. Any number multiplied by 0 equals 0.

Multiplicative Property of Zero: a × 0 = 0

It’s interesting that while multiplying by 0 always gives you 0, there’s no way to get a product 
of 0 without using 0 as one of your factors. 

Zero Product Property: If a × b = 0, then a = 0 or b = 0 or both. 

Finally, the distributive property ties together addition and multiplication. The distributive 
property for multiplication over addition—its full name—says that you can do the problem in 
two different orders and get the same answer. If you want to multiply 5(40 + 8), you can add 
40 + 8 = 48 and then multiply 5 × 48, or you can multiply 5 × 40 = 200 and 5 × 8 = 40, and then 
add 200 + 40. You get 240 either way. 

Distributive Property: a(b + c) = a × b + a × c

1·2
EXERCISE

Identify the property of the real number system that is represented in each example.

1.  7 + 6 + 3 = 7 + 3 + 6 	 5.  8(3 + 9) = 8 × 3 + 8 × 9

2.  (5 × 8) × 2 = 5 × (8 × 2)	 6.  5x = 0, so x = 0

3.  4 + 0 = 4	 7.  (8 + 3) + 6 = 8 + (3 + 6)

4.  2 × 
1
2

 = 1	 8.  28 × 1 = 28
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	 4	 practice makes perfect  Algebra I

  9.  7 × 4 × 9 = 4 × 7 × 9	 13. 
2
3

6
6

12
18

× =

10.  193 × 0 = 0  	 14.  (4 + 1) + 9 = 4 + (1 + 9)

11.  14 + (−14) = 0	 15.  839 + (−839) = 0

12.  3(58) = 3 × 50 + 3 × 8	

Integers
The integers are the positive and negative whole numbers and 0. On the number line, the negative 
numbers are a mirror image of the positive numbers; this can be confusing sometimes when 
you’re thinking about the relative size of numbers. On the positive side, 7 is larger than 4, but on 
the negative side, −7 is less than −4. It may help to picture the number line and think about 
“larger” as farther right and “smaller” as farther left. 

Expanding your understanding of arithmetic to include the integers is a first big step in 
algebra. When you first learned to subtract, you would have said you couldn’t subtract 8 from 3, 
but when you open up your thinking to include negative numbers, you can. The rules for operat-
ing with integers apply to all real numbers, so it’s important to learn them well. 

Absolute value
The absolute value of a number is its distance from 0 without regard to direction. When we write 
a number between two vertical bars, we are saying “the absolute value of the number.” If a num-
ber and its opposite are the same distance from 0, in opposite directions, they have the same 
absolute values. |4| and |−4| both equal 4, because both 4 and −4 are four units from 0. 

Addition
If you imagine the number line, adding two numbers, like 4 + 3, looks like starting at 4 and moving 
3 steps in the positive direction, that is, to the right. You end up at 7. 

–1 0 1 2 3

+3

4 5 6 7 8

If you add −3 + (−1), you start at −3 and move 1 step to the left, the negative direction, ending 
at −4. Adding two positive numbers takes you to a bigger positive number; adding two negatives 
gives you an answer further negative.  

–6 –5 –4 –3 –2

+(–1)

–1 0 1

Adding two numbers with the same sign looks like just adding the absolute values and let-
ting the sign tag along. Add 4 + 7, both positive numbers, and you get 11, a positive number. Add 
−5 + (−3), both negative, and you get −8.
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	 Arithmetic to Algebra	 5

But adding numbers with different signs is a push-pull movement. The positive number 
takes you in one direction, the negative number moves you the other way, and which sign you end 
up with depends on which number had the larger absolute value. Adding 2 + (−4) would be start-
ing at 2 and moving 4 steps to the left, the negative direction, leaving you at −2, but adding −2 + 
4 means starting at −2 and moving 4 steps right, to end at 2. 

+(–4)

+4

2

–2 –1 0 1

In both cases, it looks like the absolute values have been subtracted, but the sign of the result 
depends on whether the positive force was stronger than the negative or the other way around.  
If you need to add 13 + (−5), think 13 − 5 = 8, then look back and see that the larger-looking num-
ber, 13, is positive, so your answer is positive 8. In contrast, 9 + (−12) is going to turn out negative 
because |−12| > |9|. You’ll wind up with −3.

Subtraction
Did you notice that none of the properties of the real numbers talked about subtraction? That’s 
because subtraction is defined as addition of the inverse or opposite. To subtract 4, you add −4; to 
subtract −9, you add 9. When you learned to subtract, to answer questions like 8 5− = , what 
you were really doing was answering + =5 8. Every subtraction problem is an addition problem 
in disguise. 

To subtract an integer, add its opposite. Some people remember this rule as “keep-change-
change.” Keep the first number as is, change the operation to addition, and change the second 
number to its opposite. The problem 9 − (−7) becomes 9 + 7, whereas −3 −8 becomes −3 + (−8). 
Then you follow the rules for addition. 

 

9 7 9 7 16
3 8 3 8 11
− − = + =

− − = − + − = −
( )

( )

Multiplication
You already know how to multiply two positive numbers, so you know that a positive number 
times another positive number gives you a positive number. And you probably learned that mul-
tiplication is actually a shortcut for adding up several copies of the same number; for example,  
5 × 3 really means 3 + 3 + 3 + 3 + 3 (or 5 + 5 + 5, but more on that later). So when you’re faced with 
multiplying a positive number times a negative number, say 4 × −8, you could think of it as  
(−8) + (−8) + (−8) + (−8) and realize that multiplying a positive number times a negative number 
will give you a negative number. 

But that strategy isn’t as helpful when you’re thinking about multiplying a negative number 
times a negative number like −3 × − 4. How do you make −3 copies of −4 add up? One way to 
think about a problem like this is that it’s the opposite of 3 × −4. You know 3 × −4 = −12, so the 
opposite of that is 12. 

Not convinced? Let’s try this. You remember that the distributive property says that  
a(b + c) = ab + ac, right? And you know that zero times any number gives you zero, right? So let’s 
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	 6	 practice makes perfect  Algebra I

pick two numbers that add to zero. I’m going to use 5 and −5, but you can pick others if you’d like. 
Let’s look at what happens when we multiply 3(5 + −5) and when we multiply −3(5 + −5). Because 
5 + −5 = 0, 3(5 + −5) = 3(0) = 0, but let’s do it using the distributive property. Then 3(5 + −5) =  
3(5) + 3(−5) = 15 + −15 = 0, just as we expected. Now do −3(5 + −5) using the distributive property: 
−3(5 + −5) = −3(5) + −3(−5) = −15 + −3(−5). The result has to be zero, and to make that happen, 
−3(−5) has to be 15. A negative number times a negative number equals a positive number. 

 

4 7 28
4 7 28
4 7 28

4 7 28

× =
− × − =

× − = −
− × = −

( )
( )

 

Division
Just as subtraction is defined as adding the inverse, division is defined as multiplying by the inverse. 
If the product of two numbers is 1, the numbers are multiplicative inverses, or reciprocals, of one 

another.  The multiplicative inverse, or reciprocal, of an integer n is 1
n

. To form the reciprocal of a 

fraction, swap the numerator and denominator. The reciprocal of 4 is 1
4

 and the reciprocal of 3
4

  

is 4
3

. You probably remember learning that to divide by a fraction, you should invert the divisor and 

multiply. 
Since division is multiplication in disguise, you follow the same rules for signs when you 

divide that you follow when multiplying. To divide two integers, divide the absolute values. If the 
signs are the same, the quotient is positive. If the signs are different, the quotient is negative. 

1·3
EXERCISE

Find the value of each expression.

  1.  −12 + 14	 11.  −5 + 7

  2.  −13 − 4 	 12.  12 − 5

  3.  18 × (−3)	 13.  8 × (−4)

  4.  −32 ÷ (−8) 	 14.  −2 − 8

  5.  6 + (−3) 	 15.  −5 × 8

  6.  5 − (−9) 	 16.  −9 − 3

  7.  2 × 12 	 17.  5 ÷ (−5)

  8.  12 ÷ (−4) 	 18.  −4 × 12

  9.  −6 − 2 	 19.  −4 × (−4)

10.  −9 × (−2)	 20.  −45 ÷ (−9)
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	 Arithmetic to Algebra	 7

Order of operations
The order of operations is an established system for determining which operations to perform first 
when evaluating an expression. The order of operations tells you first to evaluate any expressions 
in parentheses. Exponents are next in the order, and then, moving from left to right, perform any 
multiplications or divisions as you meet them. Finally, return to the beginning of the line, and 
again moving from left to right, perform any additions or subtractions as you encounter them. 
Notice that multiplication and division are on the same level. That’s because division is really mul-
tiplying by the reciprocal. So do multiplication or division as you meet them, left to right. Likewise, 
addition and subtraction are on the same level. Do them left to right. Don’t jump over anything.

The two most common mnemonics to remember the order of operations are PEMDAS and 
Please Excuse My Dear Aunt Sally. In either case, P stands for parentheses, E for exponents, M 
and D for multiplication and division, and A and S for addition and subtraction.

A multiplier in front of parentheses means that everything in the parentheses is to be multi-
plied by that number. If you can simplify the expression in the parentheses and then multiply, 
that’s great. If not, use the distributive property. Remember that a minus sign in front of the 
parentheses, as in 13 − (2 + 5), acts as −1. If you simplify in the parentheses first, 13 − (2 + 5) = 13 − 7 = 6, 
but if you distribute, think of the minus sign as −1. 

 13 2 5 13 1 2 5 13 2 5 11 5 6− + = − + = − − = − =( ) ( )  

1·4
EXERCISE

Find the value of each expression. 

  1.  18 − 32	   6.  ( ) ( )22 7 2 15 5 4 8− ⋅ + ÷ − +

  2.  (18 − 3)2	   7.  9 2 4 3 5 2− + − ÷( )  

  3.  15 8 3− + 	   8.  9 2 4 3 5 2− + − ÷( )( )

  4.  15 8 3− +( ) 	   9.  8 4 12 32+ − ÷

  5.  5 3 2 42 − ⋅ +  	 10. 
10 8 12 4

3 1 4
+ − + − −

−
( ) [ ( )]

( )

Using variables
Variables are letters or other symbols that take the place of a number that is unknown or may 
assume different values. You used the idea of a variable long before you learned about algebra. 
When you put a number into the box in 4 6+ = , or knew what the question mark stood for in  
3 − ? = 2, or even filled in a blank, you were using the concept of a variable. In algebra, variables are 
usually letters, and determining what number the variable represents is one of your principal jobs. 

When you write the product of a variable and a number, you traditionally write the number 
first, without a times sign, that is, 2x  rather than x . 2. It says the same thing either way, but put-
ting the number first makes the expression cleaner and easier to read. The number is called the 
coefficient of the variable. And if you think there’s no coefficient, stop and ask yourself, “How 
many x’s do I have?” If you wrote the x (or other variable), you have 1x, but we often don’t bother 
to show a coefficient of one. A numerical coefficient and a variable (or variables) multiplied  
together form a term. When you want to add or subtract terms, you can only combine like terms, 
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that is, terms that have the same variable, raised to the same power if powers are involved. You 
know 3 cats + 2 cats = 5 cats and 2 dogs + 1 dog = 3 dogs, but 3 cats + 2 dogs could be trouble. Only 
combine like terms. When you add or subtract like terms, you add or subtract the coefficients. 
The variable part doesn’t change. 

Translating verbal phrases into variable expressions is akin to translating from one lan-
guage to another. Phrases are translated word by word at first, with care to observe syntax. Vari-
ables and numbers are nouns, operation signs (+, −, ×, ÷) act as conjunctions, and equal signs or 
inequality signs are verbs. Sometimes you need to learn an idiom. For example, “3 less than a 
number” doesn’t involve a less-than inequality sign. It translates to x − 3. If x is a number and you 
want a number that is “3 less than x,” then you need to subtract 3 from x, so x − 3. 

In Algebra, we construct and use expressions, equations, and inequalities. An expression 
may be as simple as a number or a variable and may include one or more operations. An expres-
sion is the algebra equivalent of a phrase, like “a woman and her employees.” It tells us what we’re 
talking about but doesn’t have an action word, a verb. We don’t know if a woman and her employ-
ees had a meeting or ordered lunch or won the lottery. An expression like 9x - 3(5 - x) represents 
some number, but we don’t know much more than that. 

In math, our verbs are equal and inequality signs. An equation or inequality is a full sen-
tence. The equal sign or inequality sign connects two expressions so that we understand how they 
are related. The equation 18 + 27 = 100 - 55 tells us that the expression 18 + 27 and the expression 
100 - 55 produce the same result. The inequality (−8)3 < (−8)2 says that the first expression,  
−8 × −8 × −8 or −512, is smaller than the second expression, 64. 

1·5
EXERCISE

Simplify each expression by combining like terms where possible. 

1.  3 8t t+  	   6.  ( ) ( ) ( )5 3 12 8 9 7 5t t r r t+ + − − + + −

2.  10 6x x−  	   7.  ( ) ( )5 9 7 2 3 122 2x x x x− + + + +

3.  5 3 2x y x+ −  	   8.  ( ) ( ) ( ) ( )2 7 2 3 5 8 9x y x y x− − + − + + −

4.  2 3 5 8 4y x y x− + + −  	   9.  ( ) ( )3 5 3 3 42 2x x x x+ − − + −  

5.  6 3 7 5 32 2− + − + −x x x x 	 10.  2 3 5 8 4 3y x y x− + + − −( ) ( )

 Write a variable expression for each phrase. Use the variable shown in parentheses at the end of the phrase. 

11.  Two more than 3 times a number (x)

12.  Three times a number decreased by 7 (y)

13.  The quotient of a number and 3, increased by 11 (t)

14.  Eight less than the product of a number and 9 (n)

15.  The sum of a number and its opposite (w)

16.  Three less than 5 times a number, divided by the square of the number (p)

17.  The square of a number reduced by 4 times the number (r)
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18.  Eight more than the quotient of a number and 1 less than twice the number (x)

19.  The product of 2 more than 3 times a number and 6 less than 4 times the number (z)

20.  The square root of 4 times the square of a number decreased by 1 (v)

Evaluating expressions
Evaluate, if you take the word back to its roots, means to bring out the value. You can evaluate, or 
find the value of, an algebraic expression when you know what numbers the variables stand for. 
To evaluate an algebraic expression, replace each variable with its value and simplify according to 
the order of operations. 

To evaluate 
5 3

4 2

2

2

x y
x y
−

−( )
 when x = 2 and y = 1, replace each variable with its value: 

5 2 3 1
4 2 2 1

2

2

( ) ( )
[ ( ) ( )]

−
−

. 

The order of operations calls for parentheses first, but don’t forget that the fraction bar acts like 
parentheses, so evaluate the numerator, evaluate the denominator, and then divide. 

 

5 2 3 1
4 2 2 1

5 2 3
4 2 2 1

12

2 2

( ) ( )
[ ( ) ( )]

( )
[ ( ) ( )]

−
−

= −
−

= 00 3
4 2 2 1

7
4 2 2 1

7
4 2 2 1

2 2

2

−
−

=
−

=
−

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )]] [ ( ) ( )] ( ) ( )
=

−
=

−
= = =7

4 2 4 1
7

4 8 1
7

4 7
7
28

1
4

1·6
EXERCISE

Evaluate each expression for the given values of the variables.

1.	 3x − 7 for x = 7 	   6.  x + 2y for x = 7, y = −3

2.	 14 − 5x for x = 6 	   7.  5x − 3y for x = 11, y = −10

3.	 x2 + 2x − 7 for x = −4	   8.  (2x2 + 5)(4 − y) for x = −3, y = −6

4.	
9 8

11
x

x
+

+
 for x = 2 	   9. 

− +
−

7 6
5 3

x
y

 for x = 3, y = 0

5.	 3x2 − 5x + 13 for x = 2	 10.  −4x2 + 5xy − 3y2 for x = −1, y = 2

Calculator notes #1
A graphing calculator adds many helpful functions to your mathematical toolbox, but at its heart, 
it’s still a calculator and can do all the things you’re accustomed to using a calculator to do. Some 
of them will work exactly the same way, and others will have some differences. Depending on 
what your previous calculator was like, the difference may be large or small. One of the principal 
differences is the larger display. It allows you to see several lines of entries and results, and to 
recall and edit them without a lot of retyping. 

To evaluate an expression like [(22 37) 15 5 (4 8)]2− + ÷ − −  on a traditional calculator, you might 
do it piece by piece, copying results from the calculator display, retyping a larger portion, and thinking 
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	 10	 practice makes perfect  Algebra I

about the order of operations. While that may not technically be necessary, even on a traditional 
calculator, it’s difficult to be sure you’ve entered complex expressions correctly if they scroll away as 
you type. The larger display on the graphing calculator allows you to see and edit what you have 
typed, and the calculator is programmed to execute the order of operations correctly. 

Things to be aware of: 

•	 Use all parentheses—not brackets—when you type in the expression.

	

•	 An arrowhead at the end of a line indicates that the expression you’ve typed continues 
off-screen. Move your cursor up to that line and press ENTER , and a copy will appear. You 
can cursor right and left to see the entire expression and edit it if necessary. 

•	 You can also use the ENTRY feature, which calls back the last thing you typed, by press-
ing 2nd  and ENTER .

•	 If your cursor moves up into a little box when you type the exponent, move it forward to 
get out of the box before typing the rest of the expression.

	

•	 Most graphing calculators will allow you to type in a fraction by simply typing numerator/ 

denominator, for example, 3/4. Many now display fractions in “stacked” form: 
3
4

. If typing 

3/4 and pressing ENTER  produces a decimal, check the MODE  menu to change settings. 
•	 If you’re using a long decimal or complicated fraction, you can store the number and refer 

to it by a letter. Type the number, press STO , then ALPHA  and the key over which the letter 
appears. Type ALPHA  and the key for that letter to use the number. 

•	 The letter keys or the x, T, θ, n  keys hold the last value that was stored there. If nothing has 
been stored, they will be equal to 0, but they do not reset to 0 if something has been stored. 
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·2·

In this chapter we’ll look at equations that use only one variable and do not involve 
exponents. No variable will appear under a radical or in a denominator. (That fun 
will come later.)

These equations can be simplified to the form ax + b = 0 or ax + b = cx + d. 
Examples of simplified equations include 3x + 7 = 0 and 40 + 5y = 2y − 1, but before 
being simplified, they might look like 4x − 9 = 2x + 1 or −5(8 − y) = 2(y + 4) − 9. If 
an equation has more than one variable term and one constant term on either side 
of the equal sign, take the time to simplify it before starting to solve. 

When variables are involved in equations, the sentences are usually only true 
when the variables are replaced with certain numbers, and the job of solving an 
equation is finding out which numbers can replace the variable to make a true 
statement. Sometimes this is obvious. You probably can tell that x + 4 = 5 is true 
only when x = 1. If you replaced x with 17, 17 + 4 = 5 is clearly not true. One of the 
primary jobs of algebra is to give you the tools to find those numbers when they’re 
not immediately obvious. 

Solving an equation is an inverse, or undoing, process. In the equation 3x + 7 = 0, 
the variable x was multiplied by 3 and then 7 was added. Solving the equation 
involves performing opposite operations—subtraction and division—in the oppo-
site order. 

Addition and subtraction equations
If y + 4 = 7, then you can find the value of y that makes the equation true by sub-
tracting 4 from both sides of the equation to undo the addition.

y + 4 − 4 = 7 − 4
       y = 3

If the equation was formed by adding, you solve it by subtracting. If it was formed 
by subtracting, you solve it by adding. The equation p − 7 = 2 can be solved by add-
ing 7 to both sides. 

p − 7 + 7 = 2 + 7
       p = 9

Equations with 
one variable

Tools in this chapter:

◆	 Solve equations with a single variable
◆	 Solve problems by setting up and solving equations
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2·1
EXERCISE

Solve each equation by adding or subtracting the appropriate number to both sides. 

1.  x + 8 = 12 	   6.  z − 2.8 = 10.3

2.  y − 5 = 11	   7.  y − =4 73
5

1
2

3.  t + 3 = 6	   8.  x + 14 = 8

4.  w − 13 = 24	   9.  y − 7 = −4

5.  x + =
1
2

5
2 	 10.  t + 3 = −4

 

Multiplication and division equations
The key to solving any equation is getting the variable all alone on one side of the equation. You 
isolate the variable by performing inverse operations. If the variable has been multiplied by a 
number, you solve the equation by dividing both sides by that number.

− =

−
−

=
−

= −

5 35

5
5

35
5
7

x

x

x

If the variable has been divided by a number, you multiply both sides by that number to find the 
value of the variable. 

x

x

x

6
2

6
6 2 6

12

= −

⋅ = − ⋅

= −

2·2
EXERCISE

Solve each equation by multiplying or dividing both sides by the appropriate number. 

1.	 8x = 32	   6. 
w
1 1

14
.

=  

2.	
z
7

9= 	   7. 
4
5

15
32

t =

3.	 −5y = 42	   8. 
m
4

3 1= − .

4.	
t
9

4= − 	   9.  −1.3x = 3.9

5.	 1.5x = 45 	 10. 
z
5

35=  
 

02_Wheater_Ch02_p011-018.indd   12 15/03/22   2:56 PM



	 Equations with one variable	 13

Two-step equations
Most equations require two or more operations to find a solution. The equation 4 5 19x − = says 
that if you start with a number x, multiply it by 4, and then subtract 5, the result is 19. To solve for x, 
you will need to perform the opposite, or inverse, operations in the opposite order. You are 
undoing, stripping away, what was done to x and working your way back to where things started. 
Undo the subtraction by adding 5. 

 

4 5 19
4 19 5
4 24

x
x
x

− =
= +
=

Then undo the multiplication by dividing by 4.

4 24
24
4

6

x

x

x

=

=

=

2·3
EXERCISE

Solve each equation. 

1.  3x − 7 = 32	                 6.  −3x + 5 = −16

2.  −5t + 9 = 24 	                7. 
x
2

7 15+ =  

3.  4 − 3x = −11 (Rewrite as −3x + 4 = −11 if that’s easier.)        8.  11 − 3x = 9.5

4.  9 + 3x = 10 	                 9. 
x
4

3
2

19
4

− =

5. 
x
4

7 4− = − 	              10.  2x − 7 = −23
 

Variables on both sides
When variable terms appear on both sides of the equation, add or subtract to eliminate one of 
them. This should leave a one- or two-step equation for you to solve. 

3 7 2 4
7 4

11

2 2x x
x

x

x x− −− = +
− =

=
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2·4
EXERCISE

Eliminate the extra variable term by adding or subtracting; then solve the equation.

1.  5 8 12x x− = +  	   6.  8 17 12 3x x− = +

2.  11 18 3 14x x+ = −  	   7.  x x− = −3 2

3.  3 8 4 9x x+ = − 	   8.  1 5 7 1 8 4. .   .x x− = +

4.  9 4 16 3− = +x x 	   9.  7 9 7 19− = −x x

5.  2 5 3 4x x− = −  	 10.  − + = −5 21 27x x 
 

Simplifying before solving
If the equation contains parentheses or has more than two terms on either side, take the time to sim-
plify each side of the equation before you try to solve. If there is a multiplier in front of the 
parentheses, use the distributive property to multiply and remove the parentheses. Focus on one side 
at a time and combine like terms. There should be no more than one variable term and one constant 
term on each side of the equation when you start the process of solving by inverse operations.

Distribute:
Combine like terms:

Solve:

4 3 8 10 2 3 1
12 32 10 2 3 1

12 8

( ) ( )x x x
x x x

x x

− = − + −
− = − − −

− −− = −
− = −

=

= =

−

+ +

32 8 4
4 32 4

4 28
28
4

7

8

32 32

x
x

x

x

x

2·5
EXERCISE

Simplify the left side and the right side of each equation. Leave no more than one variable 
term and one constant term on each side. Then solve each equation. 

1.  5 2 40( )x + =  	   6.  6 2 9 30 4 7 2( ) ( )x x+ − = −

2.  4 7 6 18( )x − + =  	   7.  7 1 2 12 5 1( ) ( )x x x− + = + +

3.  5 4 7 6( ) ( )x x− = −  	   8.  6 1 2 2 1 4 2( ) ( ) ( )x x x x− − = + + −

4.  4 5 3 6 2( ) ( )x x x+ + = +  	   9.  5 6 2 7 4 12 35 6 27( ) ( ) ( )x x x+ + − = − +

5.  8 4 16 10 7( ) ( )x x− − = −  	 10.  8 2 5 2 2 5 7 4 8( ) ( ) ( ) ( )x x x x− − − = + − +  
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Putting equations to work
The reason to learn to solve equations is to be able to use them to solve real-life problems. In order 
to accomplish this, you need to be able to translate the language of your problem into the symbols 
of algebra. If you were asked to solve the equation 3 7 14x − = , you probably wouldn’t have any 
hesitation. You have the skills necessary to do that. You may not jump into solving the problem 
below as quickly, but in fact, it’s the same task. 

Keisha made and sold 3 bracelets at a craft fair. After she paid $7 for her materials, she had a profit 
of $14. How much did she charge for 1 bracelet?

The first thing to remember when you face a problem is that you have the skills. The problem 
is not a new adventure. It’s just a different way of asking you to do things you know how to do. 

The second point seems obvious but it’s often forgotten. Look at this problem:

Keisha made and sold 3 bracelets at a craft fair . After she paid $7 for her materials, she had a profit 
of  $14. How much did she charge for 1 bracelet?

Now this probably seems silly, but too often this is how a problem looks to people. They grab 
the numbers—1, 3, 7, and 14—and then try to figure out what to do with them. It’s not usually a 
successful strategy. There’s a lot of information going to waste. So the second thing to remember 
is to take the time to read the problem. You’re not expected to magically know what to do with 
the numbers. Read the problem to find that out. 

Your job is to translate the problem into an equation, so think about what you need for an 
equation. There wouldn’t be a need to solve unless there’s a variable, some unknown. Locate that 
first. (Hint: It’s often in the last sentence.) Choose a variable and write down what it stands for. 

Keisha made and sold 3 bracelets at a craft fair. After she paid $7 for her materials, she had a profit 
of $14. How much did she charge for 1 bracelet?

Let x = the cost of 1 bracelet

Pause for a moment to think about units. This one is not too difficult. The cost of a bracelet 
is probably in dollars (or dollars and cents). Measurements could be in feet or inches or meters or 
centimeters or something else. What units are you asked to use? Is all the information in compat-
ible units? If you have to convert some quantity to different units, make a choice of what you’ll 
convert. Don’t convert several if you can make do with converting one. If you have a choice, think 
about which conversion is easiest.

Just as it doesn’t make sense to skip over all the words, it’s also unwise to get lost in too many 
words. Focus on what you really need to know. 

Keisha made and sold 3 bracelets at a craft fair. After she paid $7 for her materials, she had a profit of 
$14. How much did she charge for 1 bracelet?

Try to create one sentence that sums up the important information. 

3 bracelets at $x each minus $7 leaves $14

Translate that into algebraic symbols. 

(3 bracelets at $x each) minus ($7) leaves ($14)

3 7 14
3 7 14

⋅( ) − ( ) = ( )
− =

x
x  
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Once you’ve gotten to this point, you’re in familiar territory. You know how to solve this 
equation. You have the skills. 

But it’s not always that easy, you say? There are some types of problems that will require 
more preparation before you can write the equation and those will be covered later. Some will 
require that you know a common formula, like the area of a triangle or the Pythagorean theorem, 
but many problems include the needed formula, especially if it is one not used regularly. 

In the next chapter we’ll look at several different types of problems you might encounter, all 
of which can be solved with the type of equations you solved in this chapter. But first take some 
time to try your hand at the following problems. 

2·6
EXERCISE

For each problem, define a variable and write an equation, but do not solve. 

1.	 If 9 is subtracted from a number, the result is 75. What is the number?

2.	 If 3 times a certain number is decreased by 17, the result is 43. What is the number?

3.	 Five times a certain number equals 28 more than that number. What is the number?

4.	 If 8 times a certain number is decreased by 40, the result is 5 less than the original number. 
What is the number?

5.	 A tennis player played 30 games, winning 6 more than she lost. How many games did 
she win?

6.	 A father is 5 times as old as his son. The difference between their ages is 44 years. How old 
is the son?

7.	 A pen costs 89 cents more than a pencil. Together they cost $1.25. Find the cost of the pen.

8.	 Carlos and Jaden run on the high school track every evening after work. Combined, they 
run 6.25 miles, but Carlos runs 3 more laps than Jaden. If each lap is 1

4  mile, how many laps 
does Jaden run?

9.	 Isaac bought 2 movie tickets and a large bucket of popcorn for $35. A ticket costs twice as 
much as a large bucket of popcorn. How much does the large bucket of popcorn cost?

10.	� Kate spends $5.50 a day to ride the bus to and from work, and once a week she spends $8 
to have lunch with a friend. When she got paid, Kate set aside $110 for those expenses. 
Assuming that Kate works 5 days a week, how many weeks will that $110 last?
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Calculator notes #2
To check the solution of an equation (or to approximate the solution(s) of an equation beyond 
your current skills), you can use the graphing functions of your calculator. 

•	 Start by moving all the terms of the equation to one side, equal to zero. Simplify if you 
wish, but the calculator won’t care if you leave it messy. 

•	 Graph the nonzero side by pressing Y = , clearing any previous equations, and typing in 
the nonzero side of your equation. 

	

•	 Press ZOOM  and choose 6: ZStandard to set to the standard viewing window. 

	

•	 Look to see where the graph crosses the x-axis. The x-intercept is where the expression 
you typed equals zero. (For certain types of equations, there may be more than one.) If 
the equation has no solution, there will not be an x-intercept, but before you decide that, 
zoom out or change window. 

•	 Once you’ve located the x-intercept, move your cursor to the left of it. Press 2nd  TRACE , 
and choose 2: ZERO. Make sure your cursor is left of the x-intercept, press ENTER .

	

•	 Move to the right of the x-intercept, press ENTER . 
•	 Move close to the x-intercept, press ENTER . 
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The coordinates of the x-intercept will display at the bottom of the screen. The x-coordinate 
is the solution of the equation. 
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·3·

Many problems can be solved with a one-variable equation, but there are certain 
types of problems that follow a clear pattern. Knowing that routine setup for each 
type of problem makes it easier to translate the problem into an equation. Here 
are a few of the common types. 

Mixture problems
A merchant wants to mix different types of coffees or nuts. An amount of money 
is a mixture of different denominations of coins or bills. A laboratory is mixing 
chemicals in a solution, or a theater is offering different admission prices for adults 
and children. Even the famous “Two trains leave Chicago …” problems are mixing 
the distances traveled by the trains (or cars). 

When you’re faced with a problem from this mixture family, you may find it 
easier to solve if you organize the information in a chart before you try to write 
and solve an equation. If a merchant is blending 10 lb of coffee, for example, you 
want a row for each of the individual coffees and the blend and columns for pounds 
of coffee, price per pound, and total value. If you call the amount of one coffee x 
and the other 10 − x and you enter the per-pound price of each, you can multiply 
across to get the total value. The total value of the individual coffees should add up 
to the total value for the mixture, so your equation comes from adding down the 
last column. 

Pounds of coffee Price per pound Total value
Colombian x $4.95 $4.95x
Arabica 10 − x $2.80 $2.8(10 − x)
Blend 10 $3.75 $37.50

Problems solved with 
equations

Tools in this chapter:

◆	 Writing equations to represent problems
◆	 Applying algebraic skills to solve problems

03_Wheater_Ch03_p019-024.indd   19 15/03/22   2:57 PM



	 20	 practice makes perfect  Algebra I

The value of the Colombian coffee plus the value of the Arabica coffee should equal the 
$37.50 value of the blend.

+ − =
+ − =

+ =
= −
=

= ≈

x x
x x

x
x
x

x

4.95 2.8(10 ) 37.50
4.95 28 2.8 37.50

2.15 28 37.50
2.15 37.50 28
2.15 9.50

9.50
2.15

4.4

The blend should contain approximately 4.4 pounds of Colombian coffee and 10 – 4.4 = 5.6 pounds 
of Arabica. 

For coin problems, the column headings are number of coins and value of the coins, and the 
equation is formed the same way. 

Number of coins Value of coins Total value
Dimes x $0.10 $0.1x
Quarters 12 − x $0.25 $0.25(12 − x)
Blend 12 $1.95

 

0 1 0 25 12 1 95
0 1 3 0 25 1 95

0 15

. . ( ) .
. . .

.

x x
x x

x

+ − =
+ − =
− ++ =

− = −
=

3 1 95
0 15 1 05

7

.
. .x

x

You end up with 7 dimes and 5 quarters. 
The cars, trains, and planes take a little more analysis, but the setup of the problem is very 

much the same. You want a row in the table for each vehicle, and your column headings come 
from a familiar formula: rate (of speed) times time equals distance. Suppose that two trains leave 
Chicago, traveling in opposite directions. One travels at 80 mph and the other at 75 mph. When 
will the trains be 1085 mi apart? Let x be the time it takes for this to happen. 

Rate Time Distance
Train 1 80 x 80x
Train 2 75 x 5x

1085

Here’s where the little bit of extra thinking comes in. What do you do with the distances? 
Because the trains are going in opposite directions, you add the distances. If they were traveling 
in the same direction at different speeds and you wanted to know how far ahead the faster one 
had gotten, you’d subtract the distances they’d traveled. Draw a picture to help you imagine 
what’s happening in a particular problem.
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distance #1 distance #2+ distance #2

distance #2

distance #1
–

distance #1

Mixing chemicals instead of coffee? The approach is the same, but the column headings 
change. Your equation still comes from adding down the last column. 

A chemist has a 30% solution of a certain chemical and a pure version of the chemical, but 
she needs 100 grams of a 65% solution. How many grams of the 30% solution and how many 
grams of the pure chemical should she mix to produce 100 grams of a 65% solution?

Let x = the number of grams of the 30% solution
100 − x = the number of grams of pure chemical

Grams of solution Percent of chemical
Grams of chemical 
in this solution

30% solution x 0.30 0.3x
Pure chemical 100 − x 1.00 100 − x
65% solution 100 0.65 65

+ − =
− + =

− = −

= −
−

=

x x
x

x

x

0.3 (100 ) 65
0.7 100 65

0.7 35
35
0.7

50

The chemist should use 50 grams of the 30% solution and 50 grams of the pure chemical.

3·1
EXERCISE

 Solve each problem by writing and solving an equation.

1.	 Jake had 12 coins in his pocket, totaling 95 cents. If the coins were all dimes and nickels, 
how many nickels did Jake have?

2.	 Two cars leave Omaha at the same time. One travels east at 55 mph and the other travels 
west at 65 mph. When are the cars 500 mi apart?

3.	 You decide to make 10 lb of a peanut-and-raisin mixture to sell at the class snack sale. You 
can buy peanuts for $2.50 per pound and raisins for $1.75 per pound. If you want to sell the 
mixture for $2 per pound, how many pounds of peanuts and how many pounds of raisins 
should you use?

4.	 The Fletcher family puts loose change into a jar every evening. Once a month, the family 
counts the coin and prepares to take it to the bank, but removes all the pennies first. Last 
month, they found there were 14 more quarters than dimes, and the number of nickels was 
8 less than 4 times the number of dimes. If the total value of the nickels, dimes, and quarters 
was $15.75, how many dimes did they have?
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5.	 Jessie and her friends pack a tailgate picnic and, at exactly 1 p.m., set out for the football 
game, driving at 35 mph. Half an hour after they leave the house, Jessie’s mom notices their 
picnic basket, fully packed, sitting on the driveway. She grabs the basket, jumps in her car, 
and drives at 40 mph, the legal limit. When will Mom catch up with Jessie?

6.	 Bert and Harriet collect quarters and pennies. When they wrapped coins to take to the bank, 
they had $42.50. If they wrapped a total of 410 coins, how many were pennies?

7.	 Admission to the school fair is $2.50 for students and $3.75 for others. If 2848 admissions 
were collected for a total of $10,078.75, how many students attended the fair?

8.	 Alisha designs a new tea blend by mixing Sweet Rose Tulsi tea with Orange Blossom green 
tea. Sweet Rose Tulsi tea sells for $4.98 an ounce and Orange Blossom green tea sells for 
$1.98 an ounce. If she wants to blend 16 ounces of the tea blend to sell for $4.23 per ounce, 
how many ounces of each tea should she use?

9.	 At precisely noon, one plane leaves New York, heading for Orlando, and another leaves 
Orlando, heading for New York. The distance from New York to Orlando is 1300 mi. The 
plane from New York flies at 450 mph and the Orlando plane flies at 490 mph. When will the 
planes be 125 mi apart?

10.	 I leave my family’s vacation cabin at 8 a.m. and start driving home at a nice, safe 45 mph. 
Two hours later, my husband, who always drives as fast as the law will allow, leaves the 
cabin and starts driving home at 65 mph. When can I expect him to pass me?

Percentage problems
Problems that involve adding tax or a tip to a bill or applying a discount to a purchase often require 
you to use percentages. Remember that a percent is just another way of expressing a part or a frac-
tion of a whole. The whole is 100%. A percent greater than 100% indicates more than the whole. 

When you calculate, you convert percents to decimals (or fractions): 100% = 1.00, 40% = 0.40, 
and 3% = 0.03. If you add a tax of 6% to a bill, you’ll have 100% of the bill plus another 6% of the 
bill, or 106% of the bill. If you receive a 15% discount on your bill, you pay 100% of the bill minus 
15% of the bill, or 85% of the bill. 

Jeff sees an advertisement for a television at an attractive price. Because Jeff has a loyalty 
card for the vendor, he receives a 10% discount. When he purchases the TV, the discount is 
applied, but after that, a 7% tax is added. If Jeff pays $383.27, what was the advertised price to the 
nearest dollar? 

Let x = the advertised price of the TV
Let 0.90x = what Jeff paid, before tax

Let 1.07(0.90x) = total Jeff paid
The total Jeff paid was $383.27.

=
=

=

≈

x
x

x

x

1.07(0.90 ) $383.27
0.963 383.27

383.27
0.963

398  
The advertised price of the television, rounded to the nearest dollar, is $398.
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Perimeter problems
Perimeter is the word used to mean the distance around the outside edges of a closed figure. The 
perimeter of a triangle is the sum of the lengths of its three sides. For some figures, it’s possible to 
give a formula for the perimeter. The perimeter of a rectangle is P l w= +2 2 , the total of two 
lengths and two widths. For a square, the perimeter is P s= 4  because all sides are the same 
length. When no particular formula exists, you simply add the lengths of the sides. Perimeter 
problems will usually tell you how the lengths of sides compare to one another so that you can 
write an equation that doesn’t involve many different variables. 

Each of the two equal sides of an isosceles triangle is 4 centimeters less than twice the third 
side. The perimeter is 52 centimeters. Find the length of each side. 

Let x = the length of the nonequal side

Let 2x − 4 = the length of each of the equal sides

The perimeter of the triangle is 52 centimeters.

+ − + − =
− =

=
=

− =

x x x
x

x
x

x

(2 4) (2 4) 52
5 8 52

5 60
12

2 4 20  

The two equal sides are each 20 centimeters, and the third side is 12 centimeters. 

Consecutive integer problems
Integers are positive or negative whole numbers and zero. Consecutive integers are integers that 
follow one another in counting order. The integers 7, 8, and 9 are consecutive integers. If you need 
to find consecutive integers, you can let x = the smallest integer, like the 7 in the example. Then 
the second integer can be x + 1, and the third can be x + 2. 

Consecutive even integers, like 14, 16, and 18, can be represented as x, x + 2, and x + 4, 
because you’re counting by 2, not by 1. Consecutive even integers are every other number. Many 
people are surprised to learn that consecutive odd integers, like 11, 13, and 15, are also represented 
as x, x + 2, and x + 4. You’re still taking every other number. The difference is just that you’re start-
ing with an odd number instead of an even number. 

There are five consecutive integers. If the sum of the last four is decreased by the first, the 
result is 100. Find the five integers. 

	 Let x = the first integer

	 Let x + 1 = the second integer

	 Let x + 2 = the third integer

	 Let x + 3 = the fourth integer

	 Let x + 4 = the fifth integer
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The sum of the last four integers decreased by the first integer is 100.

[ ]+ + + + + + + − =
+ − =

+ =
=
=

x x x x x
x x

x
x
x

( 1) ( 2) ( 3) ( 4) 100
(4 10) 100

3 10 100
3 90

30

The five consecutive integers are 30, 31, 32, 33, and 34.

3·2
EXERCISE

1.	 The baseball mitt that Chris wanted was on a one-day sale for 25% off, and Chris had a 
coupon for an additional 10% off. Chris paid $43.87 for the mitt. What was the original 
price?

2.	 The length of a rectangle is 8 feet less than 3 times the width. The perimeter of the 
rectangle is 100 feet. Find the length and the width. 

3.	 A triangle has two sides of equal length and a third side that is 3 inches longer than the 
other sides. If the perimeter of the triangle is 54 inches, how long are the sides?

4.	 If 35% of a certain number is increased by 27, the result will be 80% of the original number. 
Find the original number. 

5.	 Find 3 consecutive integers whose sum is 96.

6.	 The Walkers have a rectangular garden in back of their home. Currently, the length is twice 
the width, but they want to enlarge the garden by adding 4 feet to the width. That will give 
the enlarged garden a perimeter of 50 feet. What were the dimensions of the original 
garden?

7.	 The five sides of a pentagon, measured in inches, are consecutive integers. Find the length 
of each side if the perimeter is 450 inches. 

8.	 Find 4 consecutive even integers whose sum is 124.

9.	 If your salary is reduced by 10%, by what percent must your new salary be increased to 
restore your original salary? [Hint: You can make up your own salary, if it helps.]

10.	� When friends came to visit, Gordon ordered a “family meal” package from a local restaurant. 
He had a coupon for 10% off the advertised price, and after he added an 18% tip, he paid 
$132.75. What was the advertised price of the family meal?
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Earlier we talked about the fact that an equation is a full mathematical sentence, 
but an expression, which has no equal sign, is just a phrase. You might be wonder-
ing when we would write an expression—a phrase—and not finish the sentence. 
When we use variables in equations, we focus on finding the one value the vari-
able can take that makes the sentence true. But variables take their name from 
vary, which means they can take on different values, and that means that variable 
expressions give us a way to talk about relationships. 

If you go out for a bike ride, the distance you travel depends on several fac-
tors. How long do you ride? How fast do you ride? Do you ride at a constant speed? 
Do you stop to rest? Using variables provides a way to express the relationship 
between the distance you traveled and your speed or between the time you spent 
biking and the distance you traveled. 

In algebra, a relation is defined as a way of pairing numbers. The two num-
bers are often labeled the input and the output, and we say that the output depends 
on the input. Talking about a relation can be as simple as making a list or table of 
the number pairs, but many times it’s useful to describe the method of pairing 
numbers by a rule. You can express this rule in words or with an algebraic 
expression. 

You could show a relation by listing the pairs: 

Input 3 2 5 -11
Output 8 -3 102 9

This relation doesn’t appear to follow any rule, and it only has a few inputs, so list-
ing might be the best way. But if a relation were to pair 1 with -1, and 2 with -2, 
and 3 with -3, you’d pretty quickly realize that it’s pairing each number with its 
opposite (a verbal description). You might also realize that you can express this by 

Functions

Tools in this chapter:

◆	 Recognizing a function and using the vertical line test
◆	 Specifying domain and range by list or description
◆	 Using function notation
◆	 Evaluating a function and finding the input that produces a given 

output
◆	 Finding a function rule
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saying that the pairs all have the form (x, -x). Being able to describe the rule for a relation is 
especially helpful if there are many pairs. Lists and tables are impractical for dozens or hundreds 
of inputs. 

Domain and range
The input is the first number in the pair, and the collection of all the inputs is called the domain. 
When you have a table with a small number of inputs, it’s easy to list the numbers in the domain. 
For larger domains, you might want to describe the domain as “the set of all positive numbers” 
or “integers between 50 and 500” or whatever works. The collection of all the outputs, the second 
numbers in the pairs, is called the range. Like the domain, it can sometimes be specified by a list, 
but other times it may be a large set of numbers that is easier to describe than list. A relation is 
simply a way of pairing numbers from the domain with numbers from the range. 

Some relations have a special property that makes them especially interesting in algebra. 
Whether or not there is a rule to describe how to pair inputs with outputs, each input has one—
and only one—partner. These relations are called functions. If a relation pairs an input of 12 with 
an output of 6 and later pairs 12 with 24, that relation is not a function. A function gives each 
input exactly one output and never pairs that input with any other number. 

A function is a relation in which each input has only one output.

This means that in a function, you shouldn’t see an input repeated, unless that repeat matches the 
input with the same output (in which case, the repeat serves no purpose and can be crossed out). 

The relation we showed above was a function: 

Input 3 2 5 -11
Output 8 -3 102 9

Each of the four inputs had a single partner. 
This relation is not a function:

Input 3 2 5 2 -11
Output 8 -3 102 7 9

The input 2 is paired with both -3 and 7. That’s fine in a relation but not in a function. 
This relation just has an unnecessary column: 

Input 3 2 5 -11 -11
Output 8 -3 102 9 9

The relation is a function, and repeating the fact that -11 is paired with 9 is unnecessary. 
The fact that a function does not repeat inputs to give them different outputs doesn’t mean 

that an output can’t be repeated. A function can have two or more inputs with the same output. 
For example, a function could pair all even integers with 0 and all odd integers with 1. You can 
even have a function, called a constant function, that matches every one of its inputs with the 
same output. A relation that pairs every number in its domain with an output of 4 is a constant 
function. That’s fine. But a function never pairs the same input with more than one output. 
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4·1
EXERCISE

For each relation shown, decide if the relation is a function. If there is a rule for the relation, 
try to describe the rule, either in words or with a pair of variable expressions. For example, to 
say that a relation pairs 1 with 100, 2 with 200, and every input with 100 times the input, 
you could write (x, 100x).

1.	 Input 2 3 4 5 6
Output 1 1 1 1 1

	   6.  Input 2 4 6 8 10
Output 1 3 5 7 9

2.	 Input 0 2 2 3 4
Output 4 1 3 2 0

	   7.  Input 10 11 12 13 14
Output 0 1 2 3 4

3.	 Input 7 5 3 1 –1
Output 7 5 3 1 –1

	   8.  Input 4 5 6 7 8
Output 8 10 12 14 16

4.	 Input 6 5 4 3 2
Output 1 2 3 4 5

	   9.  Input 5 6 7 8 9
Output 2 3 4 5 6

5.	 Input 1 2 4 8 16
Output 4 0 3 1 2

	 10.  Input 3 3 4 5 6
Output 1 4 5 6 7

 

Another way to represent relations and functions
Tables and lists are convenient for explaining relations and functions with just a few inputs, espe-
cially when the inputs are integers. When domains are larger and include all the real numbers 
between integers, it’s often more convenient to show the ordered pairs as points on a graph. In this 
representation, the inputs are plotted on the horizontal axis and the outputs on the vertical axis. 

The graph below shows a relation with 4 input-output pairs: (2, -1), (3, 3), (4, 7), and (5, 5). Its 
domain is {2, 3, 4, 5}, and its range is {-1, 3, 7, 5}.
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8
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The next graph shows a relation that includes those same 4 pairs but also many others—so 
many that the points representing them appear to blend into lines. Here the domain is all real 
numbers greater than or equal to 2 and less than or equal to 5. That’s quite a mouthful, so using 
x to stand for the inputs, we can write the domain as ≤ ≤x2 5. The outputs for this relation are 
real numbers greater than or equal to -1 and less than or equal to 7. Using y to stand for the out-
puts, you can write the range as − ≤ ≤y1 7. You couldn’t possibly list all the input-output pairs for 
this relation, but the graph helps you understand what they are.
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Vertical line test
Both the graphs above represent relations, but are those relations functions? The definition tells 
us that a relation is a function if each input has only one output. In the first relation, you can eas-
ily make a list of inputs and outputs and look to make sure that no input is repeated. For the 
second one, because you can’t make a list, it sounds like it’s harder to tell, but there a simple trick 
for identifying whether a relation is a function. 

Look at the graph of the first relation, and imagine a vertical line, maybe your pencil or the 
edge of a ruler held straight up and down. Let the vertical line move from left to right across the 
graph. Each time the vertical line encounters a point of the relation, notice that it crosses only one 
point of the relation. It crosses others as you move it, but only one at any time. 

Try the same thing, moving a vertical line left to right, across the second relation. There are 
many more points, but each time you move the vertical line, notice that it only crosses one point 
of the relation. 

If you have a graph representing a relation, the vertical line test says that if no vertical line 
ever intersects the graph more than once, the relation is a function. Put the other way around, if 
a vertical line ever crosses the graph of the relation more than once, the relation is not a function. 
If the vertical line were to hit two or more points of the graph at the same moment, that would 
mean that there were two or more outputs for the same input. 
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4·2
EXERCISE

Use the vertical line test to determine if the relation shown in the graph is a function.
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5.	

1

1

–1

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

1

1

–1
0

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

X

Y

6.	

1

1

–1

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

1

1

–1
0

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

X

Y

7. 

1

1

–1

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

1

1

–1
0

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

X

Y

8. 

1

1

–1

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

1

1

–1
0

–9

–8

–7

–6

–5

–4

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

10

X

Y

04_Wheater_Ch04_p025-034.indd   30 15/03/22   2:22 PM



	 Functions	 31

9. 
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Function notation 
When a relation is a function and has a rule, we write the rule in a way that makes it clear that 
our relation is a function. We choose a letter, often f , as the name of the function, and in paren-
theses just after that we write the variable that will stand for the inputs, usually x. You can choose 
any letter to name the function and any variable for the input. If you are writing a function that 
describes the cost of different numbers of widgets, you might decide to call it C(w), but you’ll 
often see f(x), which is read aloud as “ f of x.” Your widget function could be read as “C of w” or 
“cost of widgets.” This notation, called function notation, generally includes a statement of the 
rule for the function; for example, f(x) = 2x + 7 or C(w) = 1.29w.

Using the f(x) or other function notation, rather than writing something like y = 2x + 7, 
communicates a few important facts. It says first of all that this is a function and gives it a name 
to make it easier to distinguish when working with more than one function. It makes it clear that 
the value of the function depends on the value of the input variable, and it provides the rule that 
pairs the input to the output.

Evaluating functions
Because the output of a function depends on the input, one of our common tasks is finding the 
output value for one or more input values. Function notation gives us a simple way to talk about 
this task. Instead of having to say “if y = 2x + 7, find the value of y when x = -3 and when x = 4,” 
we can simply say “if f(x) = 2x + 7, find f(-3) and f(4).” This makes it clear that the job is to replace 
x with certain values. So f(-3) = 2(-3) + 7 = -6 + 7 = 1 and f(4) = 2(4) + 7 = 8 + 7 = 15.
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Working backwards
If you know the rule for a function and you’re given an input, finding the corresponding output 
is just a matter of evaluating the expression that defines the rule. But what if you know the rule 
and an output of the function? Can you find your way back to the input that produced it?

Often this is quite possible. Suppose that = −f x x( ) 3 7 and you know that for a certain value 
of x, the output f(x) = 32. Simply take the rule for the function and replace f(x) with 32. You’ll have 
an equation you can solve to find the value of x. 

= −
= −

=

=

=

+ +

f x x
x

x
x

x

( ) 3 7
32 3 7

39 3
39
3

3
3

13

7 7

For this function, an input of 13 results in an output of 32.
You might not be able to find the input for a particular output if you don’t yet have the skills 

to solve the resulting equation, but hopefully you’ll acquire those skills as your algebra study 
proceeds. One case in which you can’t track back to the input for a particular output is a constant 
function. A constant function, remember, is a function that assigns the same output to every 
input. The function f(x) = 7 matches every input with an output of 7. If x = 2, f(2) = 7. If x = 394, 
f(394) = 7. Even if you have the rule f(x) = 7 and an output, that output will be 7, and setting up the 
equation as we did above will just give you 7 = 7 and no x to solve for. 

4·3
EXERCISE

Evaluate each function for the given input values. 

1.	 If = +f x x( ) 2 7, find f (3) and −f ( 7).

2.	 If = +g x x( )
1
2

1
1
2

, find −g( 8) and g(5).

3.	 If = −
f x

x
( )

4
3

, find f (13) and −f ( 5).

4.	 If = −g x x( ) 9 2 , find −g( 5) and 



g

1
2

.

  5.  If = − +f x x( ) 2(4 ) 3, find f (6) and −



f

1
2

.

  6.  If = −g x x( ) 6 1, find g(0) and g(6).

  7.  If = −f x x( ) 82 , find f (2) and −f ( 2).

  8.  If = −g x x x( ) 22 , find −g( 4) and g(4).

  9.  If = + −f x x x( ) 12 , find f (5) and −f ( 5).

10.  If = + −g x x x( ) 3 92 , find g(3) and g(0).
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4·4
EXERCISE

For each function, find the input that produces the given output.

1.	 = +f x x( ) 4 9, output = 37.

2.	 = −g x x( ) 12 19, output = –79.

3.	 =C w w( ) 2.49 , output = 1245.

4.	 = −f x x( ) 51 2 , output = 65.

5.	 =g t
t

( )
140

, output = 35.

6.	 = +f x
x

( )
5

2, output = 18.

  7.	 = +g x x( ) 12 3 , output = –9.

  8.	 = −p z z( ) 8 11, output = 61.

  9.	 = −
g x

x
( )

3 1
4

, output = 9.5.

10.  = +f x x( )
1
2

6
1
3

, output = 22
5
6

.

Restricting domains
Why do functions have different domains? Sometimes it’s a very sensible, real-life reason. If you 
created a function whose inputs were the number of popsicles you bought in a week, you probably 
couldn’t buy a fraction of a popsicle, you certainly couldn’t buy a negative number of popsicles, 
and unless you have an impressive appetite for sugary ice pops, there’s probably an upper limit on 
the number you buy in a week. The domain of your popsicle function would be positive (or at least 
nonnegative) integers less than your upper limit. 

Sometimes whole sets of numbers or big subsets are perfectly fine as possible inputs. It might 
be all real numbers, or all positive real numbers, or all integers. Sometimes most of a set of num-
bers is fine, but one, or just a few, causes a bit of trouble mathematically. If the rule for a function 

is =f x
x

( ) 1 , it might be perfectly fine to input any real number except zero. Fractions can’t have a 
zero denominator; division by zero is indeterminate. 

When you encounter a new function, you may be told its domain, but if not, generally that 
means that the domain is all real numbers. But stop a minute to think about whether there should 
be any real-life or mathematical restrictions, and if you think of any, make a note of it. You can 

just write that alongside the function rule; for example, f x
x

x( ) 1 , 0= ≠ .

4·5
EXERCISE

State the restrictions, if any, we should place on the domains of these functions. 

1.	 = +
−

f x
x
x

( )
7
3

2.	 =t v
v

( )
200

 matches the average velocity in miles per hour at which you drive (v) with the 

time it takes you to drive 200 miles. 
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3.	 P(T) is a function that matches the number of tickets (T) sold for the 8 p.m. showing of a 
new movie with the number of pounds of popcorn (P) the concession stand sold. 

4.	 A ball is thrown directly upward from a height of 5 feet with an initial force of 32 feet per 
second. The function = − + +h t t t( ) 16 32 52  matches the time since the ball was thrown  
(in seconds) with its height above the ground (in feet).

5.	 = + +g x x( ) 4 5
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·5·

The graph of an equation in two variables gives a picture of all the pairs of num-
bers that balance the equation. Studying the graph will help you understand the 
relationship between the variables and can sometimes help you find the solution 
of an equation. 

The coordinate plane
The Cartesian coordinate system, named for René Descartes, is a rectangular 
coordinate system that locates every point in the plane by an ordered pair  
of numbers (x, y). The x-coordinate indicates horizontal movement and the  
y-coordinate vertical movement. Movement begins from a point (0, 0), called 
the origin, where two number lines, one horizontal and one vertical, intersect. 
The horizontal number line is the x-axis and the vertical is the y-axis. Positive 
x-coordinates are to the right of the origin and negative x-coordinates to the left. 
A y-coordinate that is positive is above the x-axis, and a negative y-coordinate is 
below (see Figure 5.1). 

The x- and y-axes divide the plane into four quadrants. The first quadrant is 
the section in which both the x- and y-coordinates are positive, and the number-
ing of the quadrants goes counterclockwise.

Coordinate graphing

Tools in this chapter:

◆	 Calculate the distance between two points and find the midpoint of a 
line segment

◆	 Understand and determine the slope of a line
◆	 Graph a line from its equation
◆	 Find the equation of a line from its graph or information about its 

graph
◆	 Find the equation of a line parallel or perpendicular to another line
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Figure 5.1  The coordinate plane divided into 
four quadrants.
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5·1
EXERCISE

Plot each point on the coordinate plane. 

1.	 A(−4, 2)	 4.	 D(−2, −6)

2.	 B(8, −3)	 5.	 E(−5, 0)

3.	 C(0, 5)	

Tell which quadrant contains the point.

6.	 (−4, 5)	 9.	 (−2, −2)

7.	 (3, 2)	 10.	 (3, −4)

8.	 (4, −1)	

Distance
The distance between two points (x1, y1) and (x2, y2) can be calculated by means of the distance 
formula d x x y y= − + −( ) ( ) .2 1

2
2 1

2  The formula is an application of the Pythagorean theorem, in 
which the difference of the x-coordinates gives the length of one leg of a right triangle, and the 
difference of the y-coordinates the length of the other. The distance between (x1, y1) and (x2, y2) is 
the hypotenuse of the right triangle (see Figure 5.2).
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Figure 5.2  The distance formula is an 
application of the Pythagorean Theorem.

X

Y

c2 = a2 + b2

(x2, y2)

(x2, y1)(x1, y1)

b
y2 – y1

a
x2 – x1

If the two points fall on a vertical line or on a horizontal line, the distance will simply be the dif-
ference in the coordinates that don’t match. 

The distance between the points (4, −1) and (0, 2) is

d = − + − − = + =( ) ( )4 0 1 2 16 9 52 2

5·2
EXERCISE

Find the distance between the given points.

1.	 (4, 5) and (7, −4)	 4.	 (5, 3) and (8, −2)

2.	 (6, 2) and (7, 6)	 5.	 (−4, 2) and (3, 2)

3.	 (−7, −1) and (−5, −6)	

Given the distance between the two points, find the possible values for the missing coordinate.

6.	 (a, −2) and (7, 2) are 5 units apart.	 9.	 (2, b) and (2, −1) are 9 units apart.

7.	 (−1, 3) and (4, d) are 13 units apart.	 10.	 (a, a) and (0, 0) are 4 2 units apart.

8.	 (8, −6) and (c, −6) are 7 units apart.	
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Midpoints
The midpoint of the segment that connects (x1, y1) and (x2, y2) can be found by averaging the 
x-coordinates and averaging the y-coordinates. 

M
x x y y

=
+ +





1 2 1 2

2 2
,

The midpoint of the segment connecting (4, −1) and (0, 2) is 

M = + − +





=






4 0
2

1 2
2

2 1
2

, ,

5·3
EXERCISE

Find the midpoint of the segment with the given end points. 

1.	 (2, 3) and (5, 8)	 4.	 (8, 0) and (0, 8)

2.	 (−3, 1) and (−1, 8)	 5.	 (0, −2) and (4, −4)

3.	 (−5, −3) and (−1, −1)

Given the midpoint M of the segment connecting A and B, find the missing coordinate. 

6.	 A(x, 6), B(6, 8), M(4, 7)	 9.	 A(4, −9), B(−2, y), M(1, −7)

7.	 A(−1, 3), B(x, 9), M(3, 6)	 10.	 A(0, 4), B(x, 0), M(8, 2)

8.	 A(−5, y), B(7, −3), M(1, 3)

Graphing equations
An equation in two variables has infinitely many solutions, each of which is an ordered pair  
(x, y). The graph of the linear equation is a picture of all the possible solutions, that is, all the 
points that represent pairs of x-values and y-values that make the statement true. There are sev-
eral ways to draw the graph of an equation. 

Table of values
The most straightforward way to graph an equation is to choose several values for x, substitute each 
value into the equation, and calculate the corresponding values for y. This information can be orga-
nized into a table of values. Geometry tells us that two points determine a line, but when building a 
table of values, it is wise to include several more so that any errors in arithmetic will stand out as 
deviations from the pattern. Although we only choose a few values for x when we build a table, after 
all those points are plotted, we connect them into a line, extend the line beyond those few points, and 
add arrows to the ends of the line. This is to show that there are infinitely many points on the line, not 
just the ones with the convenient x-values we chose but many, many more in between and beyond.

When you build a table of values, make a habit of choosing both positive and negative values 
for x. Of course, you can chose x = 0, too. Usually, you’ll want to keep the x-values near 0 so that 
the numbers you’re working with don’t get too large. If they do, you’ll need to extend your axes 

05_Wheater_Ch05_p035-048.indd   38 15/03/22   2:31 PM



	 Coordinate graphing	 39

or relabel your scales by 2s or 5s or whatever multiple is convenient. If the coefficient of x is a frac-
tion, choose x-values that are divisible by the denominator of the fraction. This will minimize the 
number of fractional coordinates, which are hard to estimate. 

To graph the equation = −y x2
3

1, you can choose several values to replace x and calculate 

the matching value of y. To make the arithmetic easier, we’ll pick values of x that are divisible by 3.

x x −−2
3

1 y (x, y)

−6 − − = − −2
3

( 6) 1 4 1 −5 (−6, −5)

−3 − − = − −2
3

( 3) 1 2 1 −3 (−3, −3)

0 − = −2
3

(0) 1 0 1 −1 (0, −1)

3 − = −2
3

(3) 1 2 1 1 (3, 1)

6 − = −2
3

(6) 1 4 1 3 (6, 3)

Once you’ve calculated all the y-values, plot each pair as a point on the coordinate plane, and con-
nect them in a line (see Figure 5.3). 

Figure 5.3  Graph of = −2
3

1y x  from table of values.
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5·4
EXERCISE

Construct a table of values and graph each equation. 

1.	 y x= +3 2 	 6.	 6 2 12x y+ =

2.	 2 4 8y x= − 	 7.	 3 4 12x y− =

3.	 3 4 12y x= + 	 8.	 y x= +
1
2

5

4.	 x y+ = 10 	 9.	 y x= − −
2
3

2

5.	 y x− =2 7 	 10.	 4 3 3x y− =

Slope and rate of change
The slope of a line is a measurement of the rate at which it rises or falls. A rising line has a positive 
slope whereas a falling line has a negative slope as shown in Figure 5.4. The larger the absolute 
value of the slope, the steeper the line. A horizontal line has a slope of 0, and a vertical line has an 
undefined slope. 

m
y y
x x

= =
−
−

rise
run

2 1

2 1

Figure 5.4  Lines with positive and negative slopes.

Positive
slope

Negative
slope

The slope of the line through the points (4, −1) and (0, 2) is 

m = − −
−

= −2 1
0 4

3
4

( )
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5·5
EXERCISE

Find the slope of the line that passes through the two points given. 

1.	 (−5, 5) and (5, −1)	 4.	 (4, 6) and (8, 7)

2.	 (6, −4) and (9, −6)	 5.	 (7, 2) and (7, 5)

3.	 (3, 4) and (8, 4)

If a line has the given slope and passes through the given points, find the missing coordinate. 

6.	 m = −4, (4, y), and (3, 2)	 9.	 m = −
3
5

, (x, 1), and (2, −5)

7.	 m = 2, (2, 9), and (x, 13)	 10.	 m = 0, (−4, y), and (−6, 3)

8.	 m =
1
2

, (−4, 1), and (3, y)

Slope and y-intercept
To draw the graph of a linear equation quickly, put the equation in slope-intercept, or y = mx + b, 
form. The value of b is the y-intercept of the line, and the value of m is the slope of the line. Begin 
by plotting the y-intercept; then count the rise and run and plot another point. Repeat a few times 
and connect the points to form a line. 

To graph 3x – 5y = 20 by slope and y-intercept, first put the equation in slope-intercept form. 

Subtract 3x from both sides: -5y = -3x + 20. Divide both sides by -5: = −y x3
5

4. Identify the  

slope =



m 3

5
 and the y-intercept (0, -4). Plot the y-intercept. From that point, count 3 up and 5 

to the right, and place a point. Count out the slope again, and place another point. Connect the 
points into a line (see Figure 5.5). 

Figure 5.5  Slope is rise over run.
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Figure 5.6  Graphing by x-intercept and y-intercept.
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Intercept-intercept
If the linear equation is in standard, or ax + by = c, form, it is very easy to find the x- and 
y-intercepts of the line. The x-intercept is the point at which y equals 0, and the y-intercept is the 
point at which x equals 0. Substituting 0 for y reduces the equation to ax = c, and dividing by a 
gives the x-intercept. In the same way, substituting 0 for x gives by = c, and the y-intercept can be 
found by dividing by b. Plotting the x- and y-intercepts and connecting them will produce a 
quick graph. 

To graph an equation like 5x + 2y = 10 by using the x- and y-intercepts, replace y with 0 to 
find the x-intercept: 5x + 2(0) = 10, so x = 2. Replace x with 0 to find the y-intercept: 5(0) + 2y = 10, 
so y = 5. Plot both intercepts. Be careful to get each one on the correct axis. Connect the points 
and extend the line (see Figure 5.6). 
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5·6
EXERCISE

Use quick graphing techniques to draw the graph of each of the following equations. 

1.	 y x= − +
3
4

1	 6.	 y x= − −3 4

2.	 2 3 9x y− = 	 7.	 y x− = +6 3 1

3.	 y x= − +4 6 	 8.	 3 5 15x y+ =

4.	 6 2 18x y+ = 	 9.	 2 5 6y x= −

5.	 x y− =2 8 	 10.	 3 2 6 0x y− − =

Vertical and horizontal lines
With a horizontal line, no matter how much you “run,” the “rise” is always zero, so the slope m is 
zero, and y = mx + b becomes just y = b. You’ll see that every point on a horizontal line has the 
same y-coordinate, and that y-coordinate is the same as the y-intercept. The equation of the hori-
zontal line is y = b.

On a vertical line, you have rise, but the run will be zero because it never moves left or right. 
When you try to calculate the slope, you run into a problem—a zero denominator. Division by 
zero is undefined, so the slope of a vertical line does not exist. But notice that every point on the 
vertical line has the same x-coordinate, so the equation of the vertical line is x = c, where c is that 
x-coordinate of every point on the line. 

5·7
EXERCISE

Identify each line as horizontal, vertical, or oblique. 

1.	 x = −3 	 4.	 y x− =4 0

2.	 y = 4 	 5.	 y + =1 4

3.	 2 8 0x + =

Graph each equation. 

6.	 y = −3 	 9.	 x = −1

7.	 x = 2 	 10.	 5 18 2y − =

8.	 y = 5
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Writing linear equations 
It is sometimes necessary to determine the equation that describes a graph either by looking at 
the graph itself or by using information about the graph. 

Slope and y-intercept
If the slope and y-intercept of the line are known or can be read from the graph, the equation  
can be determined easily by using the y = mx + b form. Replace m with the slope and b with the 

y-intercept. If you know that a line has a slope of 1
2

 and a y-intercept of 5, form its equation in  

y = mx + b form by replacing m with 1
2

 and b with 5. The equation is = +y x1
2

5.

Point and slope
If the slope is known and a point on the line other than the y-intercept is known, the equation can 
be found by using point-slope form: y y m x x− = −1 1( ). Replace m with the slope, and replace x1 
and y1 with the coordinates of the known point. Distribute and simplify to put the equation in 
y mx b= +  form.

If you know the slope of a line and you know a point that the line passes through, but that 
point is not the y-intercept, you can find the equation of the line by using point-slope form.  

Suppose that a line with a slope of 3
4

 passes through the point (-2, 7). Write point-slope form, and 

replace m with 3
4

; then replace x1 with -2 and y1 with 7.

− = −

− = − −

− = +

− = +

= + +

= +

y y m x x

y x

y x

y x

y x

y x

( )

7 3
4

( ( 2))

7 3
4

( 2)

7 3
4

3
2

3
4

3
2

14
2

3
4

17
2

1 1

Two points
If two points on the line are known, the slope can be calculated using the slope formula. Once the slope 
is found, you can use the point-slope form and fill in the slope and either one of the two points. 

If you want to write the equation of the line that passes through (-5, 3) and (7, -3), first find 
the slope. You can declare either point to be x y( , )1 1  and the other x y( , )2 2 , but be consistent or 
you’ll have sign errors.

= −
−

= − −
− −

= − = −m y y
x x

3 3
7 ( 5)

6
12

1
2

2 1

2 1
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Once you have the slope, choose either one of your points to use in point-slope form.

− = −

− = − − −

− = − +

− = − −

= − − +

= − +

y y m x x

y x

y x

y x

y x

y x

( )

3 1
2

( ( 5))

3 1
2

( 5)

3 1
2

5
2

1
2

5
2

6
2

1
2

1
2

1 1

5·8
EXERCISE

Write the equation of the line described. 

  1.  Slope = 3 and y-intercept (0, 8)

  2.  Slope = −5 and y-intercept (0, 2)

  3.  Slope = 
2
3

 and y-intercept (0, 6)

  4.  Slope = 4 and passing through the point (3, 7)

  5.  Slope = 
1
2

 and passing through the point (4, 3)

  6.  Slope = −
3
2

 and passing through the point (−4, −1)

  7.  Passing through the points (0, 3) and (2, 7)

  8.  Passing through the points (3, 4) and (9, 8)

  9.  Passing through the points (0, −3) and (3, 1)

10.  Passing through the points (2, 3) and (8, −6)

Parallel and perpendicular lines
Parallel lines have the same slope. Perpendicular lines have slopes that multiply to −1, that is, 
slopes that are negative reciprocals. To find the equation of a line parallel to or perpendicu-
lar to a given line, first determine the slope of the given line. Be sure the equation is in slope-
intercept form before trying to determine the slope. Use the same slope for a parallel line or 
the negative reciprocal for a perpendicular line, along with the given point, in point-slope 
form. 
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To find a line parallel to y x= −3 7 that passes through the point (4, −1), use the slope of 3 
from y x= −3 7 and the point (4, −1) in point-slope form and simplify.

y x
y x

y x

− − = −
+ = −

= −

( ) ( )1 3 4
1 3 12

3 13

To find a line perpendicular to  y x= −3 7 that passes through the point (4, −1), use a slope of − 1
3

.

y x

y x

y x

− − = − −

+ = − +

= − +

( ) ( )1 1
3

4

1 1
3

4
3

1
3

1
3

5·9
EXERCISE

Determine whether the lines are parallel, perpendicular, or neither.

1.	 y x= −
1
3

2 and 3 7x y+ = 	 4.	 4 6 7y x= −  and y x= +
3
2

5

2.	 x y− =5 3 and 2 10 9x y− = 	 5.	 y x= +
4
5

8 and 5 4 8x y+ =

3.	 2 8 9y x− =  and 4 3 18y x= −

Find the equation of the line described. 

  6.  Parallel to y x= −5 3 and passing through the point (3, −1)

  7.  Perpendicular to 6 8 15y x− =  and passing through the point (−4, 5)

  8.  Parallel to 4 3 21x y+ =  and passing through the point (1, 1)

  9.  Perpendicular to y x= −4 3 and passing through the point (4, 13)

10.  Parallel to 2 4 16y x= +  and passing through the point (8, 0)

Calculator notes #3
The primary task of the graphing calculator, of course, is to graph. You practice this with equa-
tions that are actually very simple to graph by hand so that you’ll have the skills to produce 
graphs of more complicated equations. The basics are simple. Press Y = , clear any old equations, 
type in your equation, press GRAPH . Of course, there can be other things to think about. 
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Your equation must be in “y=” form. If you’re trying to graph 3x − 5y = −41, it’s your job to 
first isolate y. 

	 3x − 5y = −41
	 − 5y = −3x − 41

	
y x= − −

−
3 41

5

You don’t have to simplify any more than that, and although it probably runs counter to 
your training in good practice, it might be better not to do any more. As the equation stands now, 
you can enter it as Y1 = (−3x − 41)/−5. If you simplify, you’ll have more fractions and the possibility 
of sign errors. Notice that the entire numerator is enclosed in parentheses; don’t skip them, 
because Y1 = −3x − 41/−5 only divides −41 by −5 and produces a dramatically different graph. 

  

When you’ve typed in your equation, you can hit GRAPH , but you might want to press ZOOM  
and choose 6:ZStandard instead. That sets your viewing window to −10 to 10 on the x-axis and 
−10 to 10 on the y-axis. Hitting GRAPH  displays whatever window you used last. That might be fine, 
but it might not. The window is just a portion of the infinite coordinate plane. If you graph the 
line y = x but your window is set to look at the portion of the plane for which x is between −300 
and −200 and y is between 500 and 600, you’re not going to see the line. 

If you don’t see the graph or don’t see enough of it, first press TRACE  and notice the coordi-
nates that display at the bottom of the screen. Those are the coordinates of a point on the line. You 
need to reset the window so that you can see that point. Also think about the y-intercept. Choose 
the window that seems right to you. Press WINDOW , set Xmin, Xmax, Ymin, and Ymax. You only 
need to adjust Xscl and Yscl if you’re going to look at a very large window. Set Xscl or Yscl to larger 
numbers to prevent the tick marks on the axes from blurring together. 

Most graphing calculators are not able to graph a vertical line, but may be able to draw one. 
Press 2nd  PRGM  to get the DRAW menu, choose 4: Vertical, and enter the x-value. You cannot 
trace along this line or find its x-intercept because it is not a graph. 
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·6·

The absolute value of a number is its distance from 0 without regard to direction. 
When we write a number between two vertical bars, we are saying “the absolute 
value of the number.” If a number and its opposite are the same distance from 0 
in opposite directions, they have the same absolute values. That is, |4| and |−4| 
both equal 4 because both 4 and −4 are four units from 0.

In arithmetic, dealing with an absolute value is simple. Do any work that  
appears inside the absolute value signs, and then replace the absolute value 
expression with a single number. The absolute value signs work as a grouping 
symbol, like parentheses, to tell you to do what’s inside first. In the expression 

− + × −5 8 3 4 6 35 , work on what’s inside the absolute value signs first. Remember 
to follow the order of operations. 

− + × − = − + −
= − + −
= − +

5 8 3 4 6 35 5 8 3 24 35
5 8 3 11
5 8 3(11)

The |-11 | was replaced with 11. Now you can finish the arithmetic. 

− + × − = − +
= − +
= − +
=

5 8 3 4 6 35 5 8 3(11)
5 8 33

3 33
30

Absolute value

Tools in this chapter:

◆	 Work with variable expressions involving absolute values
◆	 Solve absolute value equations with one variable
◆	 Evaluate absolute value functions
◆	 Graph two-variable equations involving absolute value
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Absolute value equations 
An absolute value equation, with a variable expression inside the absolute value signs, isn’t actu
ally the kind of one-variable equation you solved in Chapter 3, but it’s closely related. Absolute 
value equations will usually have two solutions. The expression between the absolute value signs 
may be equal to the expression on the other side of the equal sign, or it may be equal to the 
opposite of that expression. If − =x7 9 44, then 7x - 9 may equal 44 or 7x - 9 may equal -44.

− =
− = − = −

x
x x

7 9 44
7 9 44 or 7 9 44

Once you create the two possible equations, solve as you normally would. 

− =

− =
=

=

− = −
=

=

x

x
x

x

x
x

x

2 7 5

2 7 5
2 12

6
or

2 7 5
2 2

1

Always isolate the absolute value before considering the two cases. All terms other than the 
absolute value should be moved to the other side before you say that the expression in the absolute 
value signs could equal the other side or its opposite. 

− + = +

− = +

− = +

− = +

− −
x x

x x

x x

x x

4 3 1 3 5 13

4 3 1 5 10

4 3 1
4

5 10
4

3 1 5 10
4

3 3

6·1
EXERCISE

Simplify each expression. 

1.	 − + −6 4 3 8

2.	 − ⋅ +6 (3 5 2)

3.	 − ⋅ +6 3 5 2

4.	 ⋅ − +2 8 3 4 2

5.	 ⋅ − ⋅ +2 8 3 4 2

  6.  − ⋅ +2 8 3 4 2

  7.  2 3 5 8 2 1− + −

  8.  ⋅ − + ⋅ −2 3 5 8 2 1

  9.  − ⋅ − +1 4 3 2 2

10.  − ⋅ − +1 4 3 2 2
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If the absolute value is equal to an expression with two or more terms, be sure to form the 
opposite correctly by distributing the negative.

− + = +

− = +

− = +

− = +

− = +

− = +





− = +
− =
=

=

− = − +





− = − −

− = − −





− = − −
− = −
= −

= −

− −
x x

x x

x x

x x

x x

x x

x x
x
x

x

x x

x x

x x

x x
x
x

x

4 3 1 3 5 13

4 3 1 5 10

4 3 1
4

5 10
4

3 1 5 10
4

3 1 5 10
4

4(3 1) 4 5 10
4

12 4 5 10
7 4 10
7 14

2

or

3 1 5 10
4

3 1 5 10
4

4(3 1) 4 5 10
4

12 4 5 10
17 4 10
17 6

6
17

3 3

6·2
EXERCISE

Each equation involves absolute value. Solve each equation by the method above.

1.	 |3x + 5| = 23 

2.	 |6x − 3| = 17

3.	 |5x + 2| = 47

4.	 |3 + 6x| = 33

5.	 |7 + 8x| = 51 

  6.  |30 + 3x| = 18x

  7.  |40 − 2x| = 6x

  8.  |3x − 11| = 8 + x

  9.  |8x − 2| = 2x + 22

10.  |9x + 2| − 3x = 17 + x
 

Absolute value functions
In addition to showing up in equations, absolute value may appear in the rules that define func-
tions. The simplest absolute value function, =f x x( ) , is a function that pairs every nonnegative 
number with itself and every negative number with its (positive) opposite. If you’re wondering 
why we said nonnegative and not positive in that description, it was so that we didn’t have to make 
a separate rule for an input of zero, which isn’t positive or negative. The domain of the function 

=f x x( ) , the set of all its inputs, is all real numbers, but the range or set of all outputs is the set 
of all nonnegative numbers. We could describe the range by saying that ≥f x( ) 0. 
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The function =f x x( )  can be described as a function that takes an input x that represents a 
point on the number line and pairs it with an output that is that point’s distance from 0. It doesn’t 
care whether the point is to the right or left of 0 but only how far—how many steps away from 0. 
Thus, = =f (6) 6 6 because the point on the number line that we label with 6 is 6 steps away from 0. 

−



 = − =f 18 1

2
18 1

2
18 1

2
 because the point labeled −18 1

2
 is 18 1

2
 steps from 0. Inputs of 83.27 and 

-83.27 will both have outputs of 83.27. They are the same distance from 0, even though one is to 
the left and one is to the right. 

Remember that a function will never assign one input more than one output, but it can 
assign the same output to more than one input. It’s okay for the function =f x x( )  to pair both 
12 and -12 with an output of 12, but a function can’t send -12 to both 12 and 9. 

Let’s look at another function involving absolute value: = − +g t t( ) 12 5. It’s not as easy to 
describe the job of this function because there are more things going on. It’s going to take inputs 
that are represented by t. We can assume that the input could be any real number unless we have 
some information to say otherwise. To produce an output, function g will subtract 12 from the 
input and take the absolute value of the result before it adds 5 to that. Let’s look at a few inputs 
and outputs: 

= − + = + = + =g(17) 17 12 5 5 5 5 5 10

= − + = − + = + =g(8) 8 12 5 4 5 4 5 9

− = − − + = − + = + =g( 3) 3 12 5 15 5 15 5 20

The function seems to be producing positive outputs—not a surprise for an absolute value 
function. Can we make any predictions about the range? Are there any numbers this function 
will not produce? Let’s try working backwards. 

If = − +g t t( ) 12 5, what input would make =g t( ) 7? We take the rule for g and set it equal to 
the output we want. We ask for what value of t is − + =t 12 5 7? Remember that we may get two 
answers to that question. 

− + =
− =

− =
=

− = −
=

t
t

t
t

t
t

12 5 7
12 2

12 2
14

12 2
10

What input would produce an output of 3? If = − +g t t( ) 12 5, and we want =g t( ) 3, we need 
to solve − + =t 12 5 3. Our first step would be to subtract 5 from both sides, and that gives us 

− = −t 12 2. Do you see the problem we have here? −t 12  will never be negative. It will be a posi-
tive number or 0 depending on the value of t. This function will never produce an output of 3. 

We expected outputs that were positive, but 3 is positive, and the function cannot produce 
an output of 3. Look at the function rule again to see why. = − +g t t( ) 12 5 takes its inputs, sub-
tracts 12, and takes the absolute value of the result. Then it adds 5. What is the smallest number it 
will ever get when it takes the absolute value? Can you see that the smallest absolute value is 0? 
This means that the smallest output this function can produce is 0 + 5, or 5. We can say the range 
is ≥g t( ) 5. 

Can you guess what the range of = − −h z z( ) 12 7 would be? The absolute value piece will 
never be less than 0, so the smallest value the function could produce would be = − = −h z( ) 0 7 7. 
The range is ≥ −h z( ) 7.
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Graphing absolute value functions 
Many equations involving absolute value have graphs that are composed of two linear segments 
that have opposite slopes. The graph of y = |x|, for example, is made up of the graph of y = -x when 
x < 0 and the graph of y = x when x ≥ 0. The result is a V-shaped graph as shown in Figure 6.1. 

6·3
EXERCISE

Evaluate each function for the given input. 

1.	 = −f x x( ) 9  if =x 7

2.	 v t t( ) 2 1= +  if = −t 4
1
2

3.	 = − −g x x( ) 3 4 11 if = −x 2

  4.  = − +s t t( ) 5 8 if =t 8

  5.  = − +p z z( ) 5 23 23 if = −z 7

Find the values of the input variable that will produce the given output.

6.	 =g x( ) 8 if = −g x x( ) 9

7.	 =p z( ) 19 if = −p z z( ) 3 7

8.	 =v t( ) 3 if = + −v t t( ) 2 4 11

  9.  =s t( ) 6 if = + +s t t( ) 6 3

10.  =f x( ) 0 if = − −f x x( ) 10 6

Assume that the domain of each of these functions is all real numbers. Describe the range of each function. 

11. = +v t t( ) 8

12. = +f x x( ) 4

13. = −p z z( ) 7

14.  s t t( ) 2 11 13= − +

15.  = −g x x( )  (This one is tricky.)

 

Figure 6.1  Graph of the absolute value equation y = |x|.
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When you start to build a table of values to graph an absolute value equation, first find the 
value of x that will make the expression involving the absolute value equal 0. For example, to start 
building a graph of y = |2x - 5|, find the value of x that will make |2x - 5| = 0. Just solving that 
equation will do the job, and we don’t have to think about two possible solutions because unlike 
all the other numbers, zero is its own opposite. There’s no +0 or -0; there’s just 0. 

− =
− =

=
=

x
x

x
x

2 5 0
2 5 0

2 5
2.5

What this tells us is that when x = 2.5, y will equal 0. This gives us the point (2.5, 0) as a point 
on the graph and, specifically, the point of the V shape (see Figure 6.2). Put that in the center of 
your table, and choose a few x-values below it and a few above it to fill out your table. 

x -6 -3.5 -1 1 2.5 4 6 8.5 11
y 17 12 7 3 0 3 7 12 17

Figure 6.2  Graph of y = |2x - 5| from table of values.

1313 14141111 121299 10101

1

–1

11

12

13

14

15

16

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7–7 –6 –5 –4 –3 –2 –1

9

1010

1

1

–1
0

11

12

13

14

15

16

–3

–2

2

3

4

5

6

7

8

2 3 4 5 6 7 88
X

–7–8–8–9–9 –6 –5 –4 –3 –2 –1

9

1717

18

19

18

19

2020

Y

If only part of the expression is inside the absolute value symbols, as in = − −y x 7 3, you’ll will 
need to consider two cases. The first step in solving − − =x 7 3 0 will be to add 3 to both sides, and 
you’ll have − =x 7 3. You’ll have to consider x - 7 = 3 and x - 7 = -3.
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− − =
− =

− =
=

− = −
=

x
x

x
x

x
x

7 3 0
7 3

7 3
10

7 3
4

This gives you two points on the graph for your table: (4, 0) and (10, 0). Neither is the point of the V 
(see Figure 6.3), so you’ll need to choose x’s below 4, between 4 and 10, and above 10 to get a good 
picture of what’s going on. 

x 1 2.5 4 5.5 7 8.5 10 11.5 13
y 3 1.5 0 -1.5 -3 -1.5 0 1.5 3

1313 14141111 121299 10101

1

–1

–3

–2

2

3

4

5

2 3 4 5 6 7–1 1

1

–1
0

–3

–4–4

–5–5

–2

2

3

4

5

2 3 4 5 6 7 88

X

1515–1

Y

Figure 6.3  Graph of y = |x - 7| -3.

6·4
EXERCISE

Construct a table of values, and graph the equation. 

1.	 = −y x 4

2.	 = −y x 3

3.	 = +y x2 1

4.	 = +y x2 1

5.	 = −y x3

  6.  = +y x
1
2

5

  7.  = − −y x
1
3

5

  8.  = − +y x 2 1

  9.  = + −y x 5 6

10.  = − + −y x2 3 4
 

It’s possible to have absolute value expressions in inequalities that need to be solved or in 
inequalities in two variables that need to be graphed, but we’ll deal with those in Chapter 7. 
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·7·

From the beginning of your training in arithmetic, you used an equal sign (=) to 
signify several different things: “when you perform this operation, you get this 
result” or “these two expressions have the same value” and others. You may well 
have taken for granted the equal sign could be read both ways. You saw 5 + 3 = 8 
as identical to 8 = 5 + 3. Mathematicians say that the relation of equality is sym-
metric, and not every relationship is. When you meet inequalities, the relation-
ships of “is greater than” or “is less than” in particular, you have relationships that 
are not symmetric. For example, 7 < 12 is certainly not the same as 12 < 7. One is 
true; one is not. These not-symmetric relationships bring some new rules. 

When you solve an equation, you find the value of the variable that makes 
the two sides of the equation identical. We think of equations as having one solu-
tion, although there are exceptions to that rule. Inequalities, or sentences that 
involve a variable and say that two expressions are not equal, ask you to find the 
values that make one side larger than the other. The solution will be a set of num-
bers, rather than the single value that solves a linear equation. If you think of even 
the simplest inequality, like x > 4, there are infinitely many numbers that could 
replace x and make a true statement. 

Simple inequalities
Linear inequalities can be solved in much the same way as linear equations with 
one important exception. When you multiply or divide both sides of an inequality 
by a negative number, the direction of the inequality sign reverses. Imagine a 
number line for a moment, and suppose you don’t know the value of x but you do 
know that the opposite of x is greater than 5. It could be 6, or 10, or 152, or any 
number to the right of 5 on the number line. If the opposite of x, or −x, were 6, 
x itself would be −6. If −x were 10, x would be −10. If −x were 152, x would be −152, 
and so on. Now think about where those values of x lie on the number line. If −x 
is any number to the right of 5, x is a number to the left of −5. If −x > 5, then  
x < −5. Remember that the positive and negative sides of the number line are mir-
ror images of one another. When you multiply or divide both sides of an inequal-
ity by a negative number, you go through the looking glass and the larger-smaller 
relationship flips. 

Inequalities

Tools in this chapter:

◆	 Solve inequalities with a single variable 
◆	 Graph the solution of an inequality on a number line
◆	 Graph inequalities in the coordinate plane
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Follow the same plan for solving a simple inequality as you would for a simple equation. 
Simplify the left side, then the right side, until you have no more than one variable term and one 
constant term on a side. Eliminate one variable term and one constant term by adding or sub-
tracting on both sides. Remember, you want the variable on one side and the constant on the 
other. 

It’s only at the last step that you have to think about it a little differently. Your last step is to 
divide both sides by the coefficient of the variable. If that coefficient is a negative number, you’ll 
also reverse the direction of the inequality sign: > will become <, and < will become >. If there’s 
an “or equal to,” it will stay there, but the direction of the < or > will change. Here’s an example. 

Simplify the left side:	-5x - 2 + 3(x - 1) < x + 2(3x - 1)
	 -5x - 2 + 3x - 3 < x + 2(3x - 1)
	 -2x - 5 < x + 2(3x - 1)
Simplify the right side:	 -2x - 5 < x + 6x - 2
	 -2x - 5 < 7x - 2
Eliminate a variable term: -9x - 5 < -2
Eliminate a constant term: -9x < 3 

Divide both sides by −9 and change the < to >: x >
−
3
9

The solution is x > − 1
3

 

The solution set of an inequality can be graphed on the number line by shading the appro-
priate portion of the line as shown in Figure 7.1. Use an open circle to mark the boundary of the 
solution set if the inequality sign is < or > and a solid dot for inequalities containing ≤ or ≥. 

Figure 7.1  Solutions of inequalities graphed on the number line.

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1

x ≥ 2

x < –4

2 3 4 5 6 7 8 9 10

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

7·1
EXERCISE

Solve each inequality and graph the solution set on a number line. 

1.  3 5 22x − ≥ 	   6.  2 13 4 2y y− > −( )

2.  2 5 13 4x x− > − 	   7.  5 10 1 95x x+ − ≥( )

3.  3 2 8 22x x+ ≤ + 	   8.  5 4 13 28x x− ≤ +

4.  12 3 36x x+ < + 	   9.  3 2 2 3x x− < −

5.  t t− ≥ −9 24 10 	 10.  − + ≥ − +x x5 2
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Compound inequalities
A compound inequality can be written as two linear inequalities joined by the conjunction and 
or the conjunction or. The sentence “3x - 7 ≤ 4x + 2 or x - 3 > 9” is an example of a compound 
inequality using or. The sentence “2(3x + 5) ≥ 3x - 19 and x + 11 ≤ 2x - 9” is a compound 
inequality using and. Some and inequalities can be written in a condensed form; for example, 
the compound inequality 7 > 5x + 2 and 5x + 2 > -13 can be written as 7 > 5x + 2 > -13. One key 
to using this condensed form is the repetition of the same expression (in this case, 5x + 2) in 
each inequality as a link between them. You also need to have the inequality signs pointing in 
the same direction. The condensed form 7 > 5x + 2 > -13 works, and -13 < 5x + 2 < 7 would 
as well, but 7 > 5x + 2 < -13 does not. To solve compound inequalities, rewrite them as two 
inequalities, solve each inequality separately, and join the two solutions with the same 
conjunction.

22 7 5 3
22 7 5 7 5 3
15 5 5 10

> − ≥ −
> − − ≥ −
> − − ≥ −

x
x x

x x
and
and

−− < ≤
− < ≤

3 2
3 2

x x
x

and

To graph the solution set of a compound inequality, graph the solution sets of the two com-
ponent inequalities, shading lightly. If the inequalities are connected with the conjunction and, 
the solution set is the intersection or overlap of the two graphs. You want the numbers that make 
both the first inequality and the second inequality true. For compound inequalities that are con-
nected by or, you want to keep both areas of shading. The solution set includes the numbers that 
solve one inequality or the other or both. If the two shaded areas for an or inequality overlap, you 
may find that you have only one shaded area (see Figure 7.2).

Figure 7.2  Graphing the solution set of a compound inequality.

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1

–3 < x ≤ 2

x < –3 or  x ≥ 2

 x ≤ 2

 x > –3

x ≥ 2

2 3 4 5 6 7 8 9 10

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1

 x < –3

2 3 4 5 6 7 8 9 10
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7·2
EXERCISE

Solve each inequality and graph the solution set on a number line.

1.  x x− > − < −10 30 4 10or 	   6.  8 3 4 3 9 12 87 2+ > − + < − −x x x xor

2.  6 9 15< − <y 	   7.  − ≤ + ≤10 15 5 6y

3.  − ≤ + <3 4 5 2x 	   8.  − < − < −13 47 3 2x

4.  6 4 26 3 8 14x x− ≥ + <or 	   9.  3 4 6 7 5 2 3 18x x x x+ < + − > +or

5.  − < + ≤43 11 1 12x 	 10.  − + < + ≤ +4 31 16 3 2y y y

Absolute value inequalities
When you first learn about the idea of absolute value, you describe it in different ways: the num-
ber without its sign or a distance without regard to direction. You learn that |7| = 7 but |-7| = 7 as 
well. Every number has an absolute value, but no absolute value is ever negative. Every absolute 
value (except 0) may trace back to either a positive or a negative number. That’s important when 
you start to introduce variables. It’s easy to see the value of x if you’re thinking about |-12| = x, but 
if you’re trying to determine x in |x| = 5, you need to realize that x could be 5 or −5. 

In an absolute value equation, you look for two solutions, unless the absolute value is equal to 
zero. You consider the possibility that the expression within the absolute value signs is equal to the 
number on the other side of the equation and the possibility that the expression is equal to the oppo-
site of that number. If you need to solve |3x − 8| = 7, you actually have to solve two equations.

3 8 7
3 8 7
3 15

5

3 8 7
3 1

1
3

x
x
x

x

x
x

x

− =
− =
=

=

− = −
=

=

or

In an absolute value inequality, you also have two cases to consider. If you know, for example, that  
|x + 1| > 3, you have to consider that x + 1 might be a number greater than 3, like 4 or 12 or 107, so you’d 
solve x + 1 > 3. But you also have to consider the possibility that x + 1 represents a negative number 
whose absolute value is greater than 3. That could be a number like −4, whose absolute value is 4, or 
−12, whose absolute value is 12. The absolute value of x + 1 will be greater than 3 when x + 1 is less than 
−3. The two possibilities you have to examine to solve |x + 1| > 3 are x + 1 > 3 and x + 1 < −3. But only 
one of those can be true at any time, so |x + 1| > 3 translates to the compound inequality x + 1 < −3 or 
x + 1 > 3. If your inequality says |x − 2| < 7, x − 2 might be a positive number less than 7, like 3, or a nega-
tive number greater than − 7, like −1 (or zero). But if you try some other numbers, like −10, because it’s 
less than 7, or 12, because it’s greater than −7, you find those don’t work. Only numbers that are both 
less than 7 and greater than −7 will work. The inequality |x − 2| < 7 is equivalent to − 7 < x − 2 < 7. 

To solve an inequality that involves an absolute value, first isolate the absolute value. Simplify 
the inequality until one side is only an absolute value expression, and the other is as simple as possible. 
Ideally, it will be just a constant, but if there is a variable term as well, simplify as much as you can. 

Rewrite the absolute value inequality as a compound inequality. If the absolute value is 
greater than the expression on the other side, it will become an or inequality. Absolute values less 
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than an expression translate to an and inequality. The mnemonic “GreatOR, Less ThAND” will 
help you remember. Translate |3 − 7x| < 10 and |3x + 2| > 5 using the format

Opposite 
of constant

Inequality 
sign

Expression within 
the absolute value

Conjunction 
(and or or)

Expression within 
the absolute value

Inequality 
sign Constant

−10 < 3 − 7x and 3 − 7x < 10
−5 > 3x + 2 or 3x + 2 > 5

Here are a couple of examples.

50 7 3 2 15
7 3 2 15 50
7 3 2 35

3 2 35
7

3 2

− + <
− + < −
− + < −

+ > −
−

+ >

| |
| |
| |

| |

| |

x
x
x

x

x 55

	          3 2 5 5 3 2 3 2 5x x x+ > − > + + >becomes or  
− > + + >

− − >

− >
− >

> −
>

>

>

x x

x

x

x

x
x

x

x

5 3 2 or 3 2 5

5 2 3

7 3
7

3

or

3 5 2
3 3

3
3
1

4 3 7 8 48
4 3 7 48 8
4 3 7 40

3 7 40
4

3 7 10

| |
| |
| |

| |

| |

− + ≤
− ≤ −
− ≤

− ≤

− ≤

x
x
x

x

x

|3 - 7x | ≤ 10 becomes -10 ≤ 3 - 7x and 3 - 7x ≤ 10, or, if you prefer, -10 ≤ 3 - 7x ≤ 10. 

− ≤ − − ≤

− − ≤ −
− ≤ −

−
−

≥

≥

− ≤ −
− ≤

≥
−

≥ −

≥ ≥ −

x x

x
x

x

x

x
x

x

x

x

10 3 7 and 3 7 10

10 3 7
13 7

13
7

13
7

and

7 10 3
7 7

7
7

1

13
7

1
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To graph y x6
5

2≤ + , begin by graphing the line y x6
5

2= + . When you’re graphing an inequality, 

you may find that you want the line to be a dotted line rather than a solid line, so work in pencil 

or just place a few points of the line, but don’t draw it in just yet. The line y x6
5

2= +  has a y-intercept 

of 2 and a slope of 6
5

. Start by marking the y-intercept; then count up 6 and 5 to the right and place 

7·3
EXERCISE

Solve each inequality and graph the solution set on a number line.

  1.  2 7 9x − < 	   6.  − − + < −4 9 7 17x

  2.  3 5 17x + ≥ 	   7.  2 11 5 36− + ≤ −x

  3.  3 5 4 36x + + > 	   8.  4 17 2 9 19− − ≥x

  4.  4 5 3 2− − ≤x 	   9.  6 11 3x x− < − +

  5.  2 7 12 5 13x − − > 	 10.  13 5 2 1− ≥ −x x

Graphing inequalities in two variables
Like equations in two variables, inequalities can also be graphed on the coordinate plane. Begin 
by graphing the line that would result if the inequality sign were replaced with an equal sign. If 
the inequality is ≥ or ≤, use a solid line. For > or <, use a dotted line. Test a point on one side of 
the line in the inequality; the origin is often a convenient choice. If the result is true, shade that 
side of the line; if not, shade the other side (see Figure 7.3). 

Figure 7.3  Graph of a linear inequality in two variables.

y ≤ x + 26
5
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a point at (5, 8). Go back to the y-intercept, count down 6 and 5 left, and place a point at (-5, -4). 

Before you connect the dots, look at the original inequality: y x6
5

2≤ + . If it is an “or equal to” 

inequality, as this one is, you can use a solid line. But if it’s only “less than” or only “greater than,” 
make your line dotted to show that we don’t include the points on the line, only those above or 
below it. 

To determine whether to shade above the line or below it, there are two tactics you can use. 
Movement up and down on the graph is controlled by the y-values. If y is less than the expression 
you graphed, shading will go down. If y is greater than the expression, shading will go up. If you 
had to rearrange or simplify the equation before graphing it, you may feel unsure about the direc-
tion of the inequality, but you can always test a point. 

Once the line is in place, choose a point not on the line. You can choose above the line or 
below the line or even one of each. Let’s look at (-4, 2), which is above the line, and (3, 1), which 
is below the line. Plug each one into the original inequality and simplify. 

y x y x6
5

2

2 6
5

4 2

2 24
5

2

2 4.8 2
2 2.8

6
5

2

1 6
5

3 2

1 18
5

2

1 3.6 2
1 5.6

( ) ( )

≤ +

≤ − +

≤ − +

≤ − +
≤ −

≤ +

≤ +

≤ +

≤ +
≤

The inequality on the left, 2 2.8≤ − , is not true. A positive number can’t be less than a negative 
number. The point we plugged in there, (-4, 2), is not a solution. It doesn’t make the statement 
true. Its side of the line should not be shaded. The inequality on the right, 1 < 5.6, however, is true. 
One is smaller than 5.6, so the point we plugged in there, (3, 1), is in the area that we should shade. 

7·4
EXERCISE

Graph each inequality and indicate the solution set by shading. 

1.	 y x≤ −2 5 	 6.	 3 0x y− >

2.	 y x> −5 4 	 7.	 8 3 4y x− < −

3.	 y x< 	 8.	 x y− ≥ −5

4.	 y x≥ +
1
2

1	 9.	 2 2x y− ≤ −

5.	 y x≤ − +2 5 	 10.	 2 3 15x y− ≥ −
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·8·

A single equation that contains two or more variables can have infinitely 
many solutions. Each point (x, y) on a line represents a solution of the equa-
tion. A system of equations is a group of equations, each of which involves two 
or more variables. For systems with two variables and two equations, the solu-
tion is one ordered pair of values that make both the equations in the system 
true. 

Solving systems of equations by graphing
A system of two linear equations in two variables can be solved by graphing each 
of the equations and locating the point of intersection, the point where the two 
lines cross. That point is on both lines, so it represents the one pair of numbers 
that solves both equations. The coordinates of the point of intersection are the 
values of x and y that solve the system. If the lines are parallel, the system has no 
solution, however, because the lines never intersect.

In Figure 8.1, by graphing 2x − 3y = 6 and y = 3x + 5 on the same set of axes, 
you can see that they cross at the point (−3, −4). This means that x = −3 and y = −4 
will solve both equations. Each equation has an infinite number of solutions, but 
this one is the only one they have in common.

x y y x2 3 6
2 3 3 4 6

6 12 6
6 6

and

3 5
4 3 3 5
4 9 5
4 4

( ) ( ) ( )
− =

− − − =
− + =

=

= +
− = − +
− = − +
− = −

Systems of linear 
equations and inequalities

Tools in this chapter:

◆	 Solve a system of equations by graphing, by substitution, or by 
elimination

◆	 Recognize systems of equations that can have infinitely many 
solutions

◆	 Represent the solution of one system of inequalities by graphing in the 
coordinate system
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8·1
EXERCISE

Graph each system of equations and locate the solution, if one exists. 

1.	 x y
y x

+ =
=

6
2 	 

6.  2 3
2 5

x y
x y

+ =
+ =

2.	 x y
x y

− = −
+ =

6
2 0 	 

7.  x y
x y

+ =
− =

6
8

3.	 x y
y x

+ =
= −

8
2 4 	 

8.  x y
x y

+ =
− =

7
7

4.	 x y
x y

+ = −
− =

6
2 3 	 

9.  2 3 6
7

x y
x y
+ =
− = −

5.	 3 4 12
2

x y
x y
+ =

+ =
	 10.  x y

x y
+ =
− =

8 12
2 2

Graphing systems of inequalities
When you solve a system of equations by graphing, each equation has a graph that is a line, and 
the solution of the system is the point where the lines intersect. The solution of a system of 
inequalities is also the intersection of the solution sets of the individual inequalities, but the solu-
tion set of an inequality is not just a line, but a region, sometimes called a half-plane. The solution 
of the system of inequalities is the area where the two half-planes overlap.

y = 3x + 5

2x – 3y = 6

(–3, –4)

Figure 8.1  Solving a system of equations by graphing.
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To solve the system of inequalities 
x y
y x

3 11
2 6 ,

+ <
< +





 graph each of the inequalities, shading lightly, 

then locate the overlap and shade these shared values more prominently (see Figure 8.2). 

x + 3y < 11

y < 2x + 6

This area is
the solution

of the system.

Figure 8.2  Solving a system of inequalities by 
graphing.

8·2
EXERCISE

Graph each system of inequalities and indicate the solution set by shading. 

1.  y x
y x

≥ −
> −

2 3
3 	 

6.  3 0
3 2 4

x y
x y

− >
− >

2.  y x
y x

< +
≥ +

5
3 	 

7.  x y
x y

− > −
− < −

5
2 2

3.  y x
y x

≥ −
≥ −

2 3
3 2

	   8.  y x
y x
x

≥ +
< − +
> −

2 2
4

24.  y x
y x
y

>
> −
< 4

	   9.  y x
y x

> +
≤ −

2 1
2 3

5.  y x
y x
y

≤ +
≤ −
≥

3
3
0

	
10.  y x

y x
y x

≥ − −
≤ +
≥ −

2 3
2

7 3
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Solving systems of equations by substitution
When one equation in a system expresses one variable in terms of the other, like y = 3x − 1 or  
x = 4 + y, it can be used to substitute into the other equation. That substitution produces an equa-

tion with only one variable, an equation that can be easily solved. To solve the system 
y x
x y

3 1
2 5 12,

= −
+ =





 
replace the y in the bottom equation with 3x − 1.

2 5 12
2 5 3 1 12

2 15 5 12
17 5 12

17

x y
x x

x x
x

x

+ =
+ − =

+ − =
− =

( )

==
=

17
1x

Once you know the value of one variable, substitute that into either one of the original equations 
to find the value of the other variable.

y x
y
y

= −
= −
=

3 1
3 1 1
2
( )

Substitution is most convenient when one of the equations is given to you in x= or y= form, but 
you can use it anytime you can conveniently put one of the equations into that form. If trying to 
solve for x or for y in terms of the other variable is too difficult or gives you a messy substitution, 
elimination may be a better method, so see the next section.

8·3
EXERCISE

Solve each system of equations by substitution.

1.	 y x
x y

=
+ = 10

	   6.  x y
x y

− =
= −

46
7 2

2.	 x y
y x

+ =
=

12
2

	   7.  3 4 5
2 5

x y
y x

− =
= −

3.	 x y
y x

− = −
=

6
3

	   8.  5 7 73
2 1

x y
x y

+ =
− =

4.	 x y
x y

+ =
= +

57
3

	   9.  5 3 49
4 3

x y
x y

− =
− =

5.	 x y
y x

+ =
= +

2 65
4

	 10.  y x
y x

= +
= +

2 7
3 8
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Solving systems of equations by elimination
If both equations are in standard form (or can easily be transformed to standard form), then 
the method of elimination allows you to add or subtract the equations in a way that will make one 
variable drop out. Make sure that both equations are in standard form and that like terms are 
aligned under one another before you begin.

Addition
If the coefficients of one variable are opposites, add the equations to eliminate that variable. In 
this example, adding the equations will eliminate y.

2 3 10
5 3 4

7 14
2

0

x y
x y

x
x
y

− = −
+ = −

+ = −
= −        

Substitute back into either equation to find the value of the second variable. 

2 2 3 10
4 3 10

3 6
2

( )− − = −
− − = −

− = −
=

y
y
y
y

Subtraction
If the coefficients of one variable are identical, you can subtract the equations to eliminate that 
variable. In this example, subtracting the bottom equation from the top equation will eliminate 
the y. 

4 2 12
3 2 7

5
5

0

x y
x y

x
x
y

+ =
+ =

+ =
=        

Substitute back into either equation to find the value of the second variable. 

4 5 2 12
20 2 12

2 8
4

( )+ =
+ =

= −
= −

y
y
y
y
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8·4
EXERCISE

Solve each system of equations by adding or subtracting. 

1.  x y
x y

+ =
- =

8
4

	   6.  8 19
2 7

x y
x y

+ =
+ =

2.  x y
x y

+ =
- =

17
3

	   7.  7 5 21
7 9 21

x y
x y

+ =
+ =

3.  2 9
3

x y
x y

+ =
− =

	   8.  x y
x y

+ =
+ =

9 93
4 43

4.  3 2 23
2 5

x y
x y

+ =
− =

	   9.  x y
x y

+ =
+ =

1
2 9

5.  5 12 16
2 12 2

x y
x y

+ =
− = −

	 10.  x y
x y

+ =
− =

2 6
3 2 6

Elimination with multiplication
If the coefficients of the variable are neither identical nor opposite, you can still use elimination, 
but you need to do a little work first. You need to make the coefficients of one variable either iden-
tical or opposite. You can choose which variable to eliminate, and you can choose whether to 
make the coefficients identical, and then subtract, or opposite, and then add. The process of 
getting the coefficients you want may remind you of giving fractions a common denominator. 
Multiply one or both equations by constants to create equivalent equations with matching or  
opposite coefficients.

If you need to solve the system 
x y
x y

2 3 17
5 2 14,

+ =
− =





 you can multiply the top equation by 2 and 

the bottom equation by 3. This will turn the system into 
x y
x y

4 6 34
15 6 42.

+ =
− =





 This system has the 

same solution as the original, but in this version, you can eliminate y by adding the equations. Or 
you could multiply the top equation by 5 and the bottom equation by 2. The top equation will 
become 10x + 15y = 85, and the bottom equation will be 10x - 4y = 28, so subtracting will eliminate 
the x term. Once the coefficients are identical or opposite, eliminate a variable by adding or sub-
tracting, and then substitute back into one of the original equations. 

Be careful to multiply through the entire equation by the constant. Multiplying the variable 
terms but not the constant is a common error. Checking your solution in both the original equa-
tions will help you catch your errors. 
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8·5
EXERCISE

Solve each system of equations.

1.	 3 2 15
2 8
a b

a b
+ =

+ =
	   6.  2 3 4

3 8 9
x y
x y

+ =
- = -

2.	 3 2 23
9

x y
x y
+ =

- = -
	   7.  3 7 30

5 12
x y

x y
− =
+ =

3.	 8 2 16
2 7
x y

x y
+ =

- =
	   8.  7 3 1

2 1
x y

x y
− =
− =

4.	 5 2 29
3 4 33

x y
x y

− =
+ =

	   9.  2 4 5
4 5 6

x y
x y

+ =
+ =

5.	 4 3 14
3 2 19

x y
x y

− =
+ =

	 10.  2 3 21
4 9
x y

x y
+ =
+ =

Dependent and inconsistent systems
Not every system of equations has a unique solution. Because parallel lines never intersect, if the 
two equations produce parallel lines when graphed, the system has no solution. This occurs when 
the equations have the same slope but different y-intercepts. A system that has no solution is 
inconsistent. A system that has a unique solution is consistent. 

If a system is made up of two equations that produce the same graph, every point on the line 
is a point of intersection, so the system has infinitely many solutions. Such a system is dependent. 
You can recognize a dependent system because one equation will be a constant multiple of the 
other. 

Consider the system below, and let’s solve it by elimination. 

x y
x y

15 5 30
21 7 28

− =
− + =

To use elimination, we’ll need to first multiply the top equation by 7 and the bottom equation 
by 5. 

x y

x y

x y
x y

7 15 5 7 30

5 21 7 5 28

105 35 210
105 35 140

( )
( )

( )
( )

− =

− + =
⇒

− =
− + =

You may already notice something odd, but let’s add the equations. 

x y
x y

x y

105 35 210
105 35 140

0 0 350

− =
− + =

+ =

08_Wheater_Ch08_p065-076.indd   71 15/03/22   11:09 AM



	 72	 practice makes perfect  Algebra I

Zero times x is 0, and 0 times y is 0, so this says that 0 = 350, which is absolutely not true. 
This system of equations is inconsistent. It has no solution. If you were to try to solve it by 
graphing, you would find that x y15 5 30− =  is the line y x3 6= −  and x y21 7 28− + =  is the line 
y x3 4= + . The lines are parallel. They never intersect. 

Let’s look at another system. This time we’ll solve by substitution because one equation is 
already in y= format. 

y x

x y

3
4

7

3 4 28

= − −

+ = −

Replacing the y in the bottom equation with x3
4

7− −  gives us x x3 4 3
4

7 28+ − −



 = − , so 

simplify. 

x x

x x

x x

3 4 3
4

7 28

3 4 3
4

28 28

3 3 28 28

+ − −



 = −

− 



 − = −

− − = −

Can you see trouble coming? Simplifying that last line gives us -28 = -28. There’s no variable to 
solve for. This is an example of a dependent system. It’s not really two equations. If you solve 

x y3 4 28+ = -  for y, you find y x4 3 28= − −  and y x3
4

7= − − . The two equations are actually two 

copies of the same equation. If you graphed them, you’d draw one line right on top of the other. 
They would have infinitely many points in common—every point on the line. 

When solving a system:

◆	 If all variables disappear and the remaining statement is true, the system is dependent.
◆	 If all variables disappear and the remaining statement is false, the system is 

inconsistent.

8·6
EXERCISE

Label each system as consistent, inconsistent, or dependent. 

1.  x y
x y

+ =
+ =

3
7 7 21

	   4.  2 13
8 4 51

x y
x y

+ =
+ =

2.  x y
x y

+ =
+ =

2 7
2 9

	   5.  2 5 3
10 15 25

x y
x y

− =
= +

3.  x y
x y

+ =
- = -

11
1

	   6.  7 3 24
9 3 24

x y
x y

+ =
- =
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7.  11 7 13
14 46 22

x y
y x

− =
= −

	   9.  y x
y x

= −
= −

8 3
8 5

8.  y x
y x

= −
= +

2 3
2 4

	 10.  5 3 20

4
3
5

x y

x y

− =

− =

Problems solved with systems
Many of the problems you solved with equations could also be solved by means of a system of 
equations. If a mixture problem talks about making 10 pounds of a tea blend, you could let x rep-
resent the amount of one tea and 10 − x represent the amount of the other tea. But you could also 
let x represent the amount of one tea and y represent the amount of the other and include the 
equation x + y = 10 as one equation in your system. 

In theory, you could do that with any problem in which two unknowns are represented 
using one variable provided you know how the unknowns are related. That’s easy when you know 
they add to 10. It’s not so easy when you know that 17 of these and 32 of those cost $107.32. There 
are times when it’s just easier to use two variables. 

Suppose a group of friends went out to get some fast food and split into two groups in two 
different lines while waiting to order. The first group bought 8 slices of pizza and 6 soft drinks for 
$41.14. The second group bought 5 slices of pizza and 6 soft drinks for $30.10. How much does one 
slice of pizza cost?

Let x = the price of a slice of pizza
Let y = the price of a soft drink

8 slices of pizza and 6 soft drinks cost $41.14
8 6 41 14x y+ = $ .  

5 slices of pizza and 6 soft drinks for $30.10
5 6 30 10x y+ = $ .  

Solve the system 8 6 41 14
5 6 30 10

x y
x y

+ =
+ =





$ .
$ .

 

+ =
+ =

=
=
+ =

+ =
=
=

x y
x y

x
x

y
y

y
y

8 6 $41.14
5 6 $30.10

3 11.04
3.68

5(3.68) 6 30.10
18.40 6 30.10

6 11.70
1.95

A slice of pizza costs $3.68 and a soft drink costs $1.95.
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8·7
EXERCISE

1.	 A collection of dimes and nickels is made up of 16 coins and is worth $1.25. How many 
nickels are in the collection?

2.	 Adam made a trip to a town 138 miles away. He needed to walk to a bus stop and then ride 
the bus to the town. The total trip took 6 hours. If Adam walks at 4 miles per hour and the 
bus has an average speed of 28 mph, how long did Adam walk?

3.	 Mrs. Connolly invested a total of $6,000 in two investments. One portion was invested at 4% 
and the remainder at 7%. If her total earnings were $342, find the amount invested at each rate.

4.	 Chrissy and her younger sister, Claire, play a game to help Claire learn her math facts. 
Chrissy gives Claire 30 math problems. For each problem Claire gets correct, Chrissy gives 
her 7 cents, but each time Claire is wrong, she has to give Chrissy back 4 cents. If Claire ends 
the game with 12 cents, how many problems did she get correct?

5.	 If the first of two numbers is increased by 10% of the second, the result is 17. If the second 
number is increased by 25% of the first, the result is 14. Find the numbers. 

6.	 How many pounds of a tea that sells for $1.60 per pound and a tea that sells for $3.20 per 
pound should be mixed to create 40 pounds of a blend that can be sold for $2.00 per pound?

7.	 Laura Anne works as a web designer and as an editor. She earns $250 for each web page 
she creates, and $50 for each page she edits. Last week she worked on a total of 28 pages 
between these two jobs. If she earned $3,200 last week, how many web pages did Laura 
Anne produce?

8.	 A farmer kept pigs and chickens. He has 234 animals, and the animals have a total of 
560 legs. How many chickens does he have?

9.	 Whenever there is a bake sale, Pat makes brownies and cupcakes, 48 pieces total, and they 
always sell out. Brownies are sold for $1.50 each, and cupcakes for $2.25. At the January sale, 
Pat’s baked goods sold for a total of $81.00. How many brownies did Pat make?

10.	� A collection of nickels and dimes is worth $1.35. If the number of nickels and the number of 
dimes are interchanged, the value would be $1.65. What is the total number of coins?

Calculator notes #4
You can solve a system of linear equations by substitution or by elimination and usually do so 
without too much trouble. Graphing is also a method for solving systems but often not the most 
practical one because drawing the graphs by hand can be time-consuming, and if the solutions 
are not integers, estimating the fractional part can be difficult. What looks like 3 1

2  on a hand-
drawn graph could really be 3 5

8  or 3 2
5  and it would be hard to tell. 

The graphing calculator gives you a quick way to graph a system and will give you the solution, 
even if the values are not integers, accurate to several decimal places. This shouldn’t replace your 
other methods of solving systems, but it does give you a good way to verify the solution you found. 

3 5 21
2 3 5

x y
x y

− =
+ = −
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To solve the system above on your graphing calculator, you’ll need to first isolate y in each 
equation. Remember that the calculator won’t care if the expression is simplified, so don’t fuss if 
it’s not convenient to clean things up. Just remember to enclose the numerator in parentheses. 

3 5 21
5 21 3

21 3
5

2 3 5
3 5 2

5 2
3

x y
y x

y
x

x y
y x

y
x

− =
− = −

=
−( )
−

+ = −
= − −

=
− −( )

•	 Enter the equations into the Y =  menu in Y1 and Y2. 

	

•	 Press ZOOM  and choose 6: ZStandard to set a standard viewing window and display the 
graphs. If you can’t see the point of intersection of the lines, adjust your window. 

	

•	 With the point of intersection visible on screen, press 2nd  TRACE , and choose 5: intersect.

	

•	 The cursor appears on one line, and the question “First curve?” appears at the bottom of 
the screen. If you have only two lines, you can just press ENTER . (If you have more than 
two lines, use the up and down cursor keys to move to one of the lines of the system, then 
press ENTER .)

•	 The cursor jumps to a different line, and question “Second curve?” appears. As long as it’s 
the other line of the system, just press ENTER . 
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•	 The question changes to “Guess?” For linear systems, you can just press ENTER . If you 
wish, you can move your cursor close to the point of intersection before you press ENTER . 
(Later, when you solve systems in which graphs intersect more than once, the guess 
option lets you move the cursor to the intersection you want.)

•	 The solution of the system displays at the bottom of the screen. 

	

In addition to allowing you to find the solution of a system, the graph also lets you see when 
a system is inconsistent or dependent. If the lines are parallel, there is no point of intersection to 
find, so the system has no solution and is inconsistent. If the graph appears to be only one line, go 
to Y = , cursor down to Y2, cursor to the left, and press ENTER  to change the symbol. Press GRAPH  
and you show be able to see if the second line traces right on top of the first. If it does, the system 
is dependent.
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·9·

An exponent is a symbol used to show repeated multiplication. The product 5 × 5 × 5 
is written 53 to show that 5 is used as a factor 3 times. The expression x4 means 
x . x . x . x, or the product obtained by using x as a factor 4 times. The number (or 
variable) that is multiplied is called the base, the little number that tells how many 
times to use it is the exponent, and together, as in 53 or x4, they form a power.

Rules for exponents
To multiply powers of the same base, keep the base and add the exponents. If you 
write out in long form what the powers mean, you can see that the result of mul-
tiplying powers of the same base is another power of that base, and the new expo-
nent can be found by adding the exponents in the problem. 

a a a a a a a a a a a a a a2 3 5 2 3⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = = +( )( )

If the powers have different bases, there’s really not much you can do. 42 . 33 is the 
product of two 4s and three 3s. It’s not five of anything. You could evaluate 42 and 
evaluate 33 and multiply the results, but that won’t work when the bases are variables.

To divide powers of the same base, keep the base and subtract the exponents. 
Again, if you write out the long form of the problem and cancel, you’ll see that the 
result is a power of the same base, with an exponent that’s the difference between 
the two exponents.

t
t

t t t t t t t
t t t

t t
7

3
4 7 3= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅
= = −

To raise a power to a power, keep the base and multiply the exponents. If you say 
you want to square a power, for example, you’re saying that you want to multiply 
it by itself, to use it as a factor twice. This turns it into a multiplication problem, 
and you could follow the rule for multiplication. This rule is just a shortcut. 

( ) ( )( )b b b b b b3 2 3 3 3 3 6 2 3= = = =+ ×

Powers and polynomials

Tools in this chapter:

◆	 Apply the rules for exponents to operate with powers of variables
◆	 Classify, write, simplify, and evaluate polynomials
◆	 Add, subtract, multiply, and divide polynomials
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Special exponents
If you follow the rule for dividing powers to evaluate x

x

5

5 , you’ll conclude that x
x

x
5

5
0= .  You know 

from arithmetic, however, that any number divided by itself equals 1, so x
x

5

5 1= . Put those two 

ideas together and you get a simple rule: any nonzero number to the 0 power is 1. If a ≠ 0, a0 = 1. 
Notice that the rule applies only to nonzero numbers. If you tried to do 00, you’d be torn between 
“any number to the 0 power is 1” and “0 to any power is 0.” The definition of the 0 power comes 
from dividing, and because division by 0 is undefined, 00 is indeterminate. 

Applying the division rule to a problem that has a larger power in the denominator than in 
the numerator leads to another definition. 

The division rule tells us that to divide powers of the same base, we subtract the exponents, 

so x
x

x x
5

6
5 6 1= =− − . If we wrote that same division out without using exponents, it would say 

x
x

x x x x x
x x x x x x

5

6 = ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

. We can do some canceling: x
x

x x x x x
x x x x x x x

15

6

1 1 1 1 1

1 1 1 1 1

= ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

= . Doing the division 

one way gave us x 1− , and doing it the other way gave us 
x
1 , so x

x
11 =− .

In the same way, the rule for dividing powers of the same base tells us that y
y

y y
3

7
3 7 4= =− − . 

Doing that division by writing out the powers and canceling gives us y
y

y y y
y y y y y y y y

13

7

1

1

4= ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= .

In general, x
x
1n

n=− .

9·1
EXERCISE

Simplify each expression. 

	 1.	 x4 . x7	   9. 
x x

x

4 7

9

⋅

	 2.	 y5 . y	 10.  (y7)3

	 3.	 6x3 . x3	 11.  x x
x

4 2

2

⋅ −

	 4.	 3x5 . 7x5	 12.  (x2)5

	 5.	 x
x

8

2
	

13.  x x
x

3 8

3 3

⋅
( )

	 6.	
t
t

3

4
	

14.  t t
t

2 5 3

9 2

( )
( )

	 7.	 y
y

8

	
15. 

x x
x

x
x

6 9

5

3

2

4
⋅

⋅






−

	 8.	
x
x

4

9
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More rules
Combining the basic rules for exponents with the associative and distributive properties pro-
duces advanced rules for the power of a product and the power of a quotient. 

Power of a product
When a product of two or more factors is raised to a power, the associative and commutative 
properties allow us to find a shortcut. Write out the power, rearrange, and regroup, and you’ll see 
that each factor in the product is raised to the power.

( ) ( )( )( )4 4 4 4
4 4 4

2 5 3 2 5 2 5 2 5

2 2

x y x y x y x y
x x

=
= ⋅ ⋅ ⋅ ⋅ ⋅xx y y y

x y

2 5 5 5

3 2 3 5 34
⋅ ⋅ ⋅

= ( ) ( )

When a product is raised to a power, each factor is raised to that power. 

Power of a quotient
When a quotient is raised to a power, both the numerator and the denominator are raised to that 
power. 

y
x

y
x

y
x

y
x5

2

5 5

2

5 2







= ⋅ =
( )

When a quotient—a fraction—is raised to the -1 power, the effect is to exchange the numerator 
and denominator.

x
y x

y

x
y

y
x

y
x

2 1
2 1 2 1

2 23

1

3
3

3 3





= = ÷ = ⋅ =
−

When you have a quotient raised to a negative power, first exchange the numerator and denomi-
nator, and then make the power positive.

x
y

y
x

2
23

2 3 2





=






−

Then raise the numerator and denominator to the (now-positive) power.







=






= = =
− ⋅x

y
y
x

y
x

y
x x

y
x

2
2

( )
(2 ) (2 )(2 ) 43

2 3 2 3 2

2

3 2 6

2

You can combine the power of a product rule and the power of a quotient rule to handle more 
complicated expressions, but don’t misapply them. These rules don’t apply to sums or 
differences. 
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9·2
EXERCISE

Simplify each expression.

	 1.	 (2x5)2	   6. 
x 5 2

3







	 2.	 (−2x3)3 	   7. 
2
5

3 2
x
x







	 3.	 (5a2)(2a3)2	   8. 
4
3

3

5

4
t
t







	 4.	 (−x2)(3xy5)3	   9. 
−





4
3

3 5

2

3
x y
x y

	 5.	 (3b)2 (2b3)3	 10.  3
2

2 4
x
y







Monomials and polynomials
A monomial is a single term. Monomials involve only multiplication of real numbers, variables, 

and positive-integer powers of variables. The expressions −3, x2, and 2
5

7t  are all monomials, but 
4

3y
 is not because it involves division by a variable, and x  is not a monomial because it can’t be 

written as an integer power of x. 
When monomials are combined by addition or subtraction, they form polynomials. A poly-

nomial with two terms is a binomial, and one with three terms is a trinomial. For four or more 
terms, we use the general term polynomial. 

Degree of a polynomial
The degree of a monomial containing one variable is the power to which the variable is raised. 
The degree of 3x5 is 5. The degree of x is 1, and the degree of any constant is 0. If a monomial 
contains more than one variable, for example, −6x2 y3, its degree is the sum of the powers. The 
expression −6x2 y3 is a fifth-degree monomial. The degree of a polynomial is the degree of its 
highest-power monomial. The degree of 6x4 − 3x2 + 12 is 4. 

Standard form
A polynomial is in standard form when its terms are arranged in order from highest degree to 
lowest degree or lowest to highest degree. The polynomial 6x4 − 3x2 + 12 is in standard form, but 
−7t5 + 8t2 − 3t7 + 2t − 1 is not. 
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9·3
EXERCISE

Put the polynomials in standard form and give the degree. If the expression is not a 
polynomial, explain why.

	 1.	 5 3 7 22 3x x x+ − + 	   6.  4 3 8 47 2− + −z z z

	 2.	 t t t t7 12 21 5 8 9− + + − 	   7.  7 3 95 3− + −w w w

	 3.	 5 2 8 126 3 11y y y− + − 	   8.  b b b2 43 4− − −

	 4.	 t t4 52 − + 	   9. 
1

4x −
	 5.	 2 4 35 3x x x− + 	 10.  6 7 8 43 2− + −y y y

Adding and subtracting polynomials
To add polynomials, follow the rules for combining like terms. If the terms match in both vari-
able and power, add the coefficients. Keep the variable portion unchanged. Unlike terms cannot 
be combined. You will sometimes see polynomials enclosed by parentheses, as in (5x3 − 9x2 + 7x − 4) + 
(2x4 − 8x3 − 5x2 + 3). These parentheses are just to show where each polynomial begins and ends 
and can be dropped when adding. Rearrange the terms to bring like terms together and simplify.

( ) ( )
    
5 9 7 4 2 8 5 3

5 9

3 2 4 3 2

3 2

x x x x x x
x x

- + - + - - +
= - + 77 4 2 8 5 3

2 5 8 9 5

4 3 2

4 3 3 2 2

x x x x
x x x x x

- + - - +
= + - - -     ++ - +
= - - + -

7 4 3
2 3 14 7 14 3 2

x
x x x x    

When you are subtracting polynomials, the parentheses have significance. To subtract polynomi-
als, it is possible to subtract term by term. For example, the subtraction (4y3 + 3y2 + 7) − (−2y3 − 
8y2 + y − 2) can be thought of as

[ ( )] [ ( )] ( ) [ ( )]4 2 3 8 0 7 23 3 2 2y y y y y y− − + − − + − + − −

It is usually simpler, however, to treat subtraction as adding the opposite. To subtract (4y3 + 3y2 + 
7) − ( ),− − + −2 8 23 2y y y think of it as (4y3 + 3y2 + 7) plus the opposite of (−2y3 −8y2 + y − 2). The 
opposite of ( )− − + −2 8 23 2y y y  is ( ).2 8 23 2y y y+ − +  In the problem (4y3 + 3y2 + 7) − (−2y3 − 8y2 +  
y − 2), imagine that the subtraction sign is distributed to all the terms in the second set of paren-
theses; then drop the parentheses and add. 

( ) ( )
     ( )
4 3 7 2 8 2

4 3 7

3 2 3 2

3 2

y y y y y
y y

+ + − − − + −
= + + + (( )

    
   

2 8 2
4 3 7 2 8 2

3 2

3 2 3 2

y y y
y y y y y

+ − +
= + + + + − +

  
    

= + + + − + +
= + − +

4 2 3 8 7 2
6 11 9

3 3 2 2

3 2

y y y y y
y y y
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9·4
EXERCISE

Add or subtract the polynomials as indicated and give your answers in simplest form. 

	 1.	 ( ) ( )13 9 8 92 2w w w− + + − 	   6.  ( ) ( )2 6 5 8 9 22 2b b b b+ − + − +

	 2.	 ( ) ( )a a a a2 27 5 2 9− + + + − 	   7.  ( ) ( )9 7 5 2 6 32 2x x x x− + − − + +

	 3.	 ( ) ( )− + − + − +13 43 27 4 2 32 2x x x x 	   8.  ( ) ( )2 3 4 4 22 2x x x x− − + −

	 4.	 ( ) ( )3 17 34 7 14 22 2y y y y− + + − + − 	   9.  ( ) ( )2 5 5 2 32 2x x x x− + − − +

	 5.	 ( ) ( )1 2 3 32 2− + − − − −b b b b 	 10.  ( ) ( )5 7 2 3 9 12 2x x x x− + − + −

Multiplying polynomials
All polynomial multiplication is built on multiplying monomials, but we have different rules for 
polynomials of different sizes to make the work more efficient. 

Multiplying monomials
To multiply two monomials, first multiply the coefficients. If the variables are the same, use the 
rules for exponents to simplify. If the variables are different, just write them side by side.  
The product ( )( ) ( )( )( )− = − ⋅ ⋅ ⋅ = −3 2 3 2 65 2 2 3 5 2 2 3 7 5x y x y x x y y x y ,, but the product (5a2)(2b3) =  
(5 . 2)(a2)(b3) = 10a2b3.

9·5
EXERCISE

Multiply the monomials and give your answers in simplest form. 

	 1.	 (-3b2)(2b5)	   6.  -x2(3xy)(-6x3y2)

	 2.	 (-6xy2)(-5x3y2)	   7.  -6w3(2wx2)(3wx4)

	 3.	 (9x2yz5)(-4x3yz5)	   8.  (2x3)2

	 4.	 (-ab2)(3ac3)	   9.  (5b2)(2b3)2

	 5.	 (5ab)(8a2)	 10.  (-t3)(3rt2)3

Fill in the blanks with the missing monomial factor.

	 11.  (2x3)( ___ ) = −6x5	 14.  ( ___ )(-2z4) = 6x2z5

	 12.  (-3b2)( ___ ) = 12b7	 15.  (6xy2)( ___ ) = −3x3y3

	 13.  ( ___ )(3x2y) = -15x6y3
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The area model for multiplication
You likely learned along the way that the area of a rectangle can be found by multiplying the 
length times the width. If you had a rectangle that was 12 inches long and 6 inches wide, its area 
would be 12 6 72× =  square inches. And you probably figured out that if the rectangle was actu-
ally a square, with all sides the same length, finding the area just meant squaring the side length. 
A square that measures 9 feet on each side has an area of 9 812 =  square feet. These ideas can be 
helpful for multiplying polynomials. 

Suppose that you have a rectangle and you know that it is a square, but you don’t know the 
length of the side. You can call the length x (or another variable of your choice) and express the 
area of the square as x 2. We can picture it like this: 

x

x x2

If I were to tell you that I was going to increase the length of the top and bottom sides by 7 units 
so that the figure is still a rectangle but no longer a square and that I wanted you to express the 
area of the new figure, you might realize that you could do it by dealing with each section sepa-
rately and adding them together. The area of the original square is still x 2, and the new section is 
a rectangle 7 units long and x units wide, so its area is 7x. Adding the two areas gives you the area 
of the new, expanded rectangle: x x72 + . The enlarged rectangle has a length of x + 7 and a width 
of x, and its area is x x x x( 7) 72+ = + .

x

x x2

7

7x

Now suppose that I expand the vertical sides by 3 units each. Now you’re looking at a rectangle 
that measures x + 7 units long and x + 3 units wide, but you can see that the extensions we’ve made 
break that rectangle into four sections. We still have the original square, with an area of x 2, and  
the first extension that has an area of 7x. Now there’s also a rectangle that measures x units long and 
3 units wide and one in the corner whose dimensions we know. It’s 7 units long and 3 units wide. 
Label each section with its area, and add all the areas up: x x x x x7 3 21 10 212 2+ + + = + + .  
This is the area of a rectangle with a length of x + 7 and a width of x + 3. 

x x x x x x x( 7)( 3) 7 3 21 10 212 2+ + = + + + = + +

x

x x2

7

x 7

7x

3 3x 21

In the example above, we made the boxes different sizes to help you imagine finding the 
areas of several different rectangles. In truth, we didn’t know what number x represented, so we 
just made up the sizes. We made 3 look smaller than 7, but we didn’t really measure anything. If 
you use this method, you can choose to make the boxes different sizes or all the same size. What 
matters is that the expression that goes inside each box is the product of the two monomials on 
its edges. 
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One of the nice things about the area model is that you can use it to multiply polynomials of 
any size, but you only have to think about multiplying monomials (and a bit of adding at the end). 
Let’s try multiplying 5x - 3 by x x2 62 − + . If you’re more comfortable, you can think of 5x - 3 as 
5x + (-3) and x x2 62 − +  as x x2 ( ) 62 + − + . We’ll set up two rows of three rectangles each, but you 
could put 5x - 3 across the top and use three rows of two rectangles. The result will be the same. 

x2 –x

5x

+6

–3

First, we’ll do the multiplications that involve 5x. The rectangle whose sides are 5x and x 2 has 
an area of x5 3. The area of the middle rectangle is 5x times -x or x5 2− , and the final box on that 
row has an area of 5 times 6 or 30x.

x2 –x

5x

+6x2 –x +6

5x3 –5x2 30x

–3

Move to the second row, and multiply -3 times x 2, -3 times -x, and -3 times 6.

x2 –x

5x

+6x2 –x +6

5x3 –5x2 30x

–3x2 +3x –18–3

When every rectangle has been filled with an expression for its area, the last job is to simplify by 
combining like terms. Remember to add only like terms.

x x x x x x x x

x x x

(5 3)( 6) 5 ( 5 3 ) (30 3 ) 18

5 8 33 18

2 3 2 2

3 2

- - + = + - - + + -

= - + -

Did you notice that the like terms to be combined fell on diagonals of the boxes? That will 
happen provided that you have both factors in standard form before you multiply. 

x2 –x

5x

+6x2 –x +6

5x3 –5x2 30x

–3x2 +3x –18–3

The area model is often helpful when you’re learning to multiply polynomials, but after 
you’ve had some practice, you may feel as though drawing all the boxes takes up a lot of time and 
space. You may wonder if there’s another way to multiply. Well, there are different rules to help 
you remember what steps to take, but they do basically the same thing. Some, like the FOIL rule, 
are only useful in certain situations, but others are more generally useful. We’ll talk about some 
of the common rules and let you decide which ones are useful to you.
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Multiplying with the distributive property
To multiply a monomial times a larger polynomial, use the distributive property. 

− − + − + −
= − ⋅ +

2 4 6 5 7 8 2
2 4

3 5 4 3 2

3 5

x x x x x x
x x

( )
     ( ) (−− ⋅− + − ⋅ + − ⋅− + − ⋅2 6 2 5 2 7 2 83 4 3 3 3 2 3x x x x x x x x) ( ) ( ) ( )) ( )+ − ⋅−2 23x

Then follow the rules for multiplying monomials.

( ) ( ) ( ) (− ⋅ + − ⋅− + − ⋅ + − ⋅−2 4 2 6 2 5 2 73 5 3 4 3 3 3x x x x x x x x 22 3 3

8 7 6

2 8 2 2
8 12 10

) ( ) ( )
    

+ − ⋅ + − ⋅−
= − + − +

x x x
x x x 114 16 45 4 3x x x− +

9·6
EXERCISE

Multiply the polynomials and give your answers in simplest form. 

	 1.	 5 2 32a a a( )+ 	   6.  5 5 72 2 2x y x xy y( )− +

	 2.	 − − −2 3 22 2x x x( ) 	   7.  8 2 3x x y z( )+ −

	 3.	 2 11 3 52 2y y y( )− + 	   8.  − −5 2 3ab a b( )

	 4.	 − − +3 2 3 43 2b b b( ) 	   9.  1
2

8 6 10 2 14 203 7 5 4 2x x x x x x( )− + − + −

	 5.	 xy x xy y( )3 5 22 2+ − 	 10.  − − + −3 3 2 74 3 2 2 5 4a b c a b bc a c( )

Fill in the blanks with the missing factor.

	 11.	 ( )( )x x+ = +1 3 3 	 14.  7 7 49 2x x x( ) = +

	 12.	 a ab a( ) = − 5 	 15.  ( )( )2 4 22 2a b a b ab+ = +

	 13.	 ( )( )2 8 4x y x y− = −

Multiplying binomials
Multiplication of two binomials is accomplished by repeated application of the distributive 
property, but there is a convenient shortcut, known by the acronym FOIL. 

The distributive rule
To multiply two binomials by distributing, treat the first binomial as the multiplier and distribute 
it to both terms of the second binomial. 

( )( ) ( ) ( )x x x x x+ − = + − +5 3 5 3 5
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This gives you two smaller distributive multiplications. Distribute x to both terms of x + 5, 
distribute −3 to both terms of x + 5, and combine like terms. 

x x x x x x x x( ) ( )+ − + = + − − = + −5 3 5 5 3 15 2 152 2

The FOIL rule
FOIL stands for “First, Outer, Inner, Last” and is a reminder of the four multiplications that must 
be performed to successfully multiply two binomials, the four areas you find in an area model 
that is two terms by two terms.

First: ( )( ) ( )( )2 3 5 7 2 5x x x x- + =

Outer: ( )( ) ( )( ) ( )( )2 3 5 7 2 5 2 7x x x x x- + = +

Inner: ( )( ) ( )( ) ( )( ) ( )( )2 3 5 7 2 5 2 7 3 5x x x x x x- + = + + -

Last: ( )( ) ( )( ) ( )( ) ( )( ) ( )2 3 5 7 2 5 2 7 3 5 3x x x x x x- + = + + - + - (( )7

You will often find that there are like terms that can be combined after the four multiplications 
are performed. 

( )( ) ( )( ) ( )( ) ( )( ) ( )2 3 5 7 2 5 2 7 3 5 3x x x x x x- + = + + - + - (( )7
10 14 15 21
10 21

2

2

= + - -
= - -

x x x
x x

When the binomials you’re multiplying are the sum and difference of the same two terms, like 
(x + 5) and (x − 5), the inner and outer terms will add to 0, leaving you with a difference of squares. 

( )( )x x x x x
x

+ − = − + −
= −

5 5 5 5 25
25

2

2

9·7
EXERCISE

Multiply the binomials. Give your answers in simplest form. Use whichever method you find 
comfortable. 

	 1.	 (x + 8)(x + 2)	   6.  (5x - 6)(3x + 4)

	 2.	 (y − 4)(y - 9)	   7.  (6x - 1)(x + 5)

	 3.	 (t - 2)(t + 6)	   8.  (1 - 3b)(5 + 2b)

	 4.	 (2x + 8)(x - 3)	   9.  (3x - 7)(2x + 5)

	 5.	 (y - 9)(3y + 1)	 10.  (5 - 2x)(5x - 2)
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Try to predict the product of each pair of binomials without actually multiplying; then check.

	 11.	 (x - 4)(x + 4) 	 14.  (3x + 5)(3x - 5)

	 12.	 (x + 3)(x - 3) 	 15.  (7 - 3x)(7 + 3x)

	 13.	 (2x - 1)(2x + 1)

Fill in the blank with the missing term. Check your answer by multiplying.

	 16.	 ( )( )x x x x+ + = + +3 5 62 	 19.  ( )( )3 2 3 17 102x x x x− − = − +

	 17.	 ( )( )x x x x− − = − +7 9 142 	 20.  ( )( )2 3 3 6 152t t t t+ − = − −

	 18.	 ( )( )2 1 2 9 42a a a a+ + = + +

Multiplying larger polynomials
When one of the polynomials to be multiplied has more than two terms, it may be convenient to 
place them one under another, usually with the longer one on top and shorter one on the bottom, 
and multiply each term in the bottom polynomial by each term in the top polynomial, arranging 
like terms under one another in the result for easy combination. This is the same algorithm you 
learned for multiplying numbers with more than two digits. 

         
      

      

2 3 4
3 1

2 3 4

2

2

x x
x

x x

+ −
−

− − + times each term)(
   

−
+ −

1
6 9 123 2x x x ( times each term)

Ad
3

6 7 15 43 2

x
x x x+ − +      ( dd like terms)

9·8
EXERCISE

Multiply the polynomials. Give your answer in simplest form. Use the method you find most 
comfortable.

	 1.	 ( )( )a a a+ + +7 2 5 32
	   6.  ( )( )x x x− − +2 4 42

	 2.	 ( )( )2 3 3 2 52b b b+ + + 	   7.  ( )( )t t t− + +2 2 42

	 3.	 ( )( )c c c− − −8 4 7 22
	   8.  ( )( )x x x+ − +1 12

	 4.	 ( )( )2 1 4 7 5 73 2x x x x− − + − 	   9.  ( )( )x x x2 24 4 4− + +

	 5.	 ( )( )y y y+ − +4 5 12

	 10.  ( )( )y y y y2 23 5 2 5 3− + + −

Dividing polynomials
Polynomial division is built on dividing monomials, but there are systems to help organize larger 
problems. 
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Dividing by a monomial
To divide a monomial by a monomial, divide the coefficients and use the rules for exponents to 
simplify like variables. 

− = − 











= −4
2

4
2

2
3 2

2

3

2

2x y
x y

x
x

y
y

xy

To divide a larger polynomial by a monomial, divide each term of the larger polynomial by the 
monomial divisor. 

12 8 5 2
2

12
2

8
2

5
2

2
2

6
5 3 2 5 3 2t t t t

t
t
t

t
t

t
t

t
t

- + + = - + + = tt t t4 24 5
2

1- + +

9·9
EXERCISE

Divide the polynomials and give your answer in simplest form. 

	 1.	 ( ) ( )24 37 2 4c d c÷ 	   9.  ( ) ( )8 94 7 3x x x− ÷

	 2.	 ( ) ( )− ÷ −35 76 2d d 	 10.  ( ) ( )15 21 35 7 2y y y− ÷

	 3.	 ( ) ( )− ÷ −52 139 2x x 	 11.  ( ) ( )5 15 52x x x+ ÷

	 4.	 ( ) ( )20 412 8y y÷ 	 12.  ( ) ( )− + ÷ −9 133 4 3y y y

	 5.	 ( ) ( )24 65 3x y x÷ − 	 13.  ( ) ( )56 49 42 35 710 9 8 7 2z z z z z− + − ÷

	 6.	 ( ) ( )15 152 2x x÷ 	 14.  ( ) ( )− + − ÷ −9 27 81 34 3 3 4 2 5x y x y x y xy

	 7.	 ( . ) ( . )− ÷3 9 1 36 4t t 	 15.  ( ) ( )15 5 20 53 2x x x x− + ÷

	 8.	 ( ) ( )− ÷18 7 3 7q r q r 	

Long division
Long division of polynomials is modeled on the algorithm for long division that you learned in 
arithmetic. It can be used to divide by a monomial, but it is more commonly used when the divi-
sor is a binomial or a larger polynomial. 

Arrange the dividend and the divisor in standard form, highest power to lowest, and insert 
0s for any missing powers to make it easier to line up like terms. Divide the first term of the divi-
dend by the first term of the divisor, and place the result as the first term of the quotient. Multiply 
the entire divisor by the term you just placed in the quotient, aligning like terms under the divi-
dend. Subtract, and bring down any remaining terms in the dividend. 

)+ + + + ÷ =

+ ↓ ↓ +

− + + − + +

x x x x
x

x x x

x x x x

x x x x

2 4  6 0 8 10 
3

(6 2 3 goes to the quotient.)

6 12   (Multiply 3 times 2 4, subtract, and bring down.)

12 8 10 ( 12 8 10 is the new dividend.)

3 2

2

3 2

3 2 2

2 2
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Repeat these steps, but use this new expression formed by subtracting and bringing down as your 
dividend. 

)2 4 6 0 8 10
3 6 16

3 2

2

x x x x
x x

+ + + +
− +

 6 123 2x x+ ↓ ↓
− + + − ÷ = −12 8 10 12 2 62 2x x x x x( )

times− − ↓ − +12 24 6 2 42x x x x    ( )
32 10 32 2 16x x x+ ÷ =( )

ti32 64 16x +       ( mmes 2 4x + )
−54

You can express the remainder as a fraction by putting the remainder as the numerator of the 
fraction and the divisor as the denominator. The division problem( ) ( )6 8 10 2 43x x x+ + ÷ +  is 

equal to 3 6 16 54
2 4

2x x
x

− + + −
+

.  

9·10
EXERCISE

Divide using long division.

	 1.	 ( ) ( )x x x2 15 56 8− + ÷ − 	   6.  ( ) ( )2 7 5 32a a a+ + ÷ +

	 2.	 ( ) ( )y y y2 20 5− − ÷ − 	   7.  ( ) ( )2 7 3 32b b b− + ÷ −

	 3.	 ( ) ( )6 5 6 3 22x x x+ − ÷ − 	   8.  ( ) ( )12 17 20 20 3 53 2x x x x+ − − ÷ +

	 4.	 ( ) ( )84 3 45 12 94 2 2x x x− − ÷ − 	   9.  ( ) ( )x x x4 2 28 12 2+ + ÷ +

	 5.	 ( ) ( )9 42 45 3 82x x x− + ÷ − 	 10.  ( ) ( )8 1 2 13y y+ ÷ +

Calculator notes #5
When you’re working with polynomials, you have variables and powers, sometimes more than 
one variable, no specific value to plug in for the variable, and you need to add, subtract, multiply, 
and divide. How is the calculator going to help?

Operations with polynomials (and operations with rational expressions) are not going to be 
taken over by your calculator, unless your calculator is equipped with CAS, but there is a simple 
way to use the graphing calculator to check your work when you’re operating on polynomials in 
one variable. Let’s say you need to simplify the expression below. 

3 2 5 3 2 7 42 2 2x x x x x− +( ) − −( ) +( )
You carefully apply the distributive property and the FOIL rule. You’re alert to the fact that 

subtracting can lead to sign errors. You combine like terms and only like terms, and when 
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you’re done, you have 6 17 16 8 284 3 2x x x x− + − + . But your friend has 4 8 283 2x x x− + + . You don’t 
want to start over. What to do? 

•	 Go to the Y =  menu, and clear any old equations. 
•	 Enter the original problem in the Y1 = slot. Graph. Adjust the window, if necessary, so 

that you can see a good bit of the graph. 

	

•	 Enter your result in the Y2 = slot. Move your cursor all the way to the left and ENTER . The 
slanted line will change to a heavier slanted line. If you press again, it will change again 
and again until you come round to where you started. Choose either the heavy line or one 
of the little “bubbles” and then graph. 

	

•	 If the graph of your answer follows right along the graph of the question, you have an 
equivalent expression. You don’t have any mistakes, but always check to make sure you 
simplified completely. The calculator won’t tell you that. 
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·10·

When you learn to multiply, you learn that each of the numbers you multiply is 
called a factor, and the result of that multiplication is a product. There are many 
different sets of factors that produce the same product. The factors 2 and 24 yield 
the product 48, but so do the factors 3 and 16, and the factors 2, 3, and 8, and many 
others. 

You can talk about factor pairs, two numbers that multiply to a particular 
product, and discover that a product may have multiple factor pairs. The factor 
pairs for 12 are 1 and 12, 2 and 6 and 3 and 4. You can also talk about the prime 
factorization of a number, which reduces it to a product of the smallest possible 
integer factors, all prime numbers. The prime factorization of a large number, like 
108, is easier to write with exponents: 108 2 2 3 3 3 2 32 3= × × × × = × .

Factoring is the process of reexpressing a quantity as the product of two or 
more simpler quantities, called factors. You can factor 35 by writing it as 5 × 7, and 
you can factor a monomial like −3 2 3x y  by writing out − ⋅ ⋅ ⋅ ⋅ ⋅3 x x y y y. Factoring 
polynomials is a little more complicated, but a few rules will cover most situations. 

Greatest common monomial factor
You will often be able to find several different factor pairs for a monomial. You 
know this is true when you factor a constant, but it’s also true for a single term 
involving a variable. The constant 24 could be factored as 1 × 24, 2 × 12, 3 × 8, or 
4 × 6. The monomial 48 5x could be written as 48 5⋅x , 12 42 3x x⋅ , 3 16 4x x⋅ , and more.

Identifying the GCF
The greatest common monomial factor of a polynomial is the largest monomial 
that is a factor of every term. In this context, largest means the “largest coefficient 
and the highest power of the variable.” The polynomial 12 85 4 2x y x y+ − 10x3y3 has 
a greatest common factor (GCF) of 2 3x y  because 2 is the largest integer that divides 
all three coefficients, x3 is the largest power of x present in all terms, and y is the 

Factoring

Tools in this chapter:

◆	 Recognize and identify factors and products
◆	 Find the common monomial factor of several monomials or monomial 

terms
◆	 Factor polynomials using the area model 
◆	 Use sums and products to factor a trinomial
◆	 Recognize the factors of special polynomials
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largest power of y present in all terms. Notice that the largest power of a variable contained in all 
the terms is the smallest one you see. The largest power of x in 12 8 105 4 2 3 3x y x y x y+ −  is x3, which 
is the smallest power of x in any of the terms. You can leave the extra variables behind, but you 
can’t factor out more than the monomial has.

10·1
EXERCISE

Identify the greatest monomial that is a factor of each term of the polynomial. 

1.	 4 23 2x x− 	 6.	 16 24 85 3 4t t t− +

2.	 25 152r r+ 	 7.	 az az a z az2 2 3 52 10 4− + −

3.	 22 333t + 	 8.	 3 272 2 2x y y−

4.	 6 8 143 2x x x− + 	 9.	 2 10 82 2 3ax a x a− +

5.	 2 4 92 2 2ax a x ax− + 	 10.	 6 9 12ab bc ac+ −

Writing the factored form
Factoring out the greatest common factor is applying the distributive property in reverse. The 
distributive property tells you that to multiply a monomial times a polynomial, you multiply 
the monomial by each term of the polynomial. To multiply − +x x x3 ( 7 4)3 2 , multiply 3 3x  times x2, 
then 3 3x  times −7x, and 3 3x  times 4. 

3 7 4 3 3 7 3 4

3 21 12

3 2 3 2 3 3

5 4 3

x x x x x x x x

x x x

− +( ) = ⋅ + −( ) + ⋅

= − +

Each term of the new polynomial can be simplified, but because the trinomial in the original 
problem had no like terms, there should not be any like terms in the answer. 

Factoring out a GCF means starting with the product, working out what the monomial 
multiplier would be, and rewriting the polynomial as a product. To do this reversal on 
3 21 125 4 3x x x− + , first ask what is the largest integer that will divide all three coefficients. The 
largest divisor of 3, −21, and 12 is 3, so the greatest common factor has a coefficient of 3. Then look 
at the variables. What’s the largest power of x that is a factor of x5, x4, and x3? That will be the 
lowest power of the three, so x3. The GCF is 3 3x . 

To find the other factor, the polynomial in parentheses, divide each term of the original 

polynomial by the GCF: 3
3

21
3

12
3

7 4
5

3

4

3

3

3
2x

x
x
x

x
x

x x− + = − + . To write the factored form, bring the 

common factor to the front, and in parentheses show the other factors.

3 21 12 3 7 45 4 3 3 2x x x x x x− + = − +( ).

Here’s another example. The GCF of the terms in 12 8 105 4 2 3 3x y x y x y+ −  is 2 3x y. Divide each 
term by the GCF.

12
2

8
2

10
2

6 4
5

3

4 2

3

3 3

3
2 2x y

x y
x y
x y

x y
x y

x xy y+ − = + − 5 .
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Write as a product of the GCF and this simpler polynomial. 

12 8 10 2 6 45 4 2 3 3 3 2 2x y x y x y x y x xy y+ − = + −( )5

If the GCF is actually a term of the polynomial, remember to express that term as the common 
factor times 1 and have a 1 in the parentheses for that position.

6 12 3 3 2 3 4 3 1
3 2 4 1

3 2 2

2

x x x x x x x x
x x x

− + = ⋅ − ⋅ + ⋅
= − +( )

10·2
EXERCISE

Factor each polynomial by factoring out the greatest common monomial factor.

1.	 y y2 15− 	 6.	 − − +a a a2 3 42

2.	 3 62b b− 	 7.	 25 50 1254 5 7x x x− +

3.	 32 402a b ab+ 	 8.	 8 24 162r rt r+ +

4.	 5 15 202y y+ + 	 9.	 16 482 2 3x y x y−

5.	 x y x y x y8 4 4 7 3 5− + 	 10.	 3 6 152 2 2x y xy x y+ +

Factoring x2 + bx + c 
A trinomial of the form x bx c2 + + , if it is not prime, can be factored to the product of two bino-
mials. Just as we say a number is a prime number if its only factors are itself and 1, a polynomial 
is prime if it’s not factorable. If you factor x bx c2 + + , it will factor to something of the form 
( )( ).x r x t+ +  When you factored out a greatest common monomial factor, you were reversing 
the type of multiplication you did with the distributive property. When you factor x bx c2 + + , 
you reverse a multiplication done with the FOIL rule, or by repeated application of the distribu-
tive law, or by the area model.

If you were to multiply x x( 5)( 7)+ + , you would have four products: x x x 2⋅ = , x x7 7⋅ = , 
x x5 5⋅ = , and 5 . 7 = 35. You’d combine 7x and 5x to get 12x for a result of x x12 352 + + . The 12 is 

the sum of 5 and 7, and the 35 is the product of 5 and 7.
In general, we can show that when you multiply two binomials, like (x + r) and (x + t), the 

coefficient of the x-term is the sum of r and t, and the constant term is the product of r and t. 

x r x t x x x t r x r t
x r t x rt

+( ) +( ) = ⋅ + ⋅ + ⋅ + ⋅
= + +( ) +2

The product of r and t will equal the constant term c of the trinomial, and the sum of r and t will 
produce the middle coefficient b. To factor x x2 5 6+ + , you need to find a pair of integers that add 
to 5 and multiply to 6. For small numbers, this isn’t difficult: x x x x2 5 6 3 2+ + = + +( )( ). You can 
check your factors by multiplying.
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Going back to the area model for multiplication can help with factoring. To get a product 
like x x5 62 + + , you would have multiplied x . x, so you can start with that. 

x

x

x2

The constant term of 6 is the product of the two constants in the binomials, but this could be 
1 . 6 or 2 . 3. Sometimes you’ll find that there’s only one possibility; other times there may be quite 
a few. 

x

x 1?  2?

x2

6
6?
3?

We’ll get a little more help from the middle term, in this case 5x. Which of the possible pairs of 
numbers, 1 . 6 or 2 . 3, will add to 5? Notice that 6 - 1 will give you 5 and that may be helpful later, 
but we’re looking for numbers that add to 5, so our choice is 2 and 3. You can finish the areas to 
check that this works.

x

x 2

x2 2x

3x 63

x x x x5 6 ( 2)( 3)2 + + = + +

Let’s try to factor x x8 122 − + . You can once again start with x . x, but there are several pairs 
of numbers that will multiply to 12: 1 and 12, 2 and 6, and 3 and 4. You’ll need that middle term 
to help you decide. 

x

x

x2

12

You need a pair of numbers that will add to -8. Adding two positive numbers isn’t going to give 
you a negative number, but don’t panic. There are three other number pairs that will multiply to 12: 
-1 and -12, -2 and -6, and -3 and -4. The pair you need here is -2 and -6. 

x

–6 –6x

–2x

–2x

x2

12
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If the constant term is positive, you’ll want either two positive numbers or two negative numbers, 
and the sign of the middle term will tell you which you need. 

If the middle term of the trinomial is negative, as in x x2 8 12− + , the process of factoring is 
the same, except that the binomials have negative signs. The factors of x x2 8 12− +  are 
( )( )x x− −6 2  because − ⋅ − =6 2 12( ) and − + − = −6 2 8( ) .  

When the constant term is negative, however, it’s a signal that one factor is x plus a constant 
and one is x minus a constant, and this causes a slight change in your search for factors. If the 
constant term of the trinomial is negative, you still want two integers that multiply to that num-
ber, but you need to remember that adding a positive and a negative will look like subtracting. 

To factor x x2 9 90− − ,  look for factors of −90, which are just factors of 90 but you’ll make one 
negative. The factors of 90 are 1 × 90, 2 × 45, 3 × 30, 5 × 18, 6 × 15, and 9 × 10. None of those is  
going to add to 9 or −9, but that’s okay. Remember that you’re going to make one of the factors 
negative and one positive. If you actually used 1 and 90, they’d add to 91, but if you used -1 and +90, 
they’d add to +89. If you used +1 and -90, the sum would be -89. You want a pair that adds to -9.

You’re actually looking for a pair that subtracts to 9, and 6 × 15 fits the bill. Set up ( )( )x x+ −6 15 , 
and then think about the result you want. 

x

15

6x

x2

–90

You want to get −9 as the coefficient of x, so you want a negative sign on the larger number, 15, 
and a positive sign on the smaller one, 6.

x

–15

+6x

x2

–15x

+6x

–90

x x x x2 9 90 6 15− − = + −( )( )

10·3
EXERCISE

Factor each polynomial. If the polynomial does not factor, write “Prime.” 

1.	 x x2 12 35+ + 	 6.	 x x2 2 3− −

2.	 x x2 11 28+ + 	 7.	 x x2 11 18− +

3.	 x x2 8 15− + 	 8.	 x x2 9 22− −

4.	 x x2 7 12− + 	 9.	 x x2 10 39+ −

5.	 x x2 20+ − 	 10.	 x x2 12 32+ +
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Factoring ax2 + bx + c 
When a trinomial has an x-squared term with a coefficient other than one, finding the factors is 
a little trickier. A trinomial of the form ax bx c2 + + , where a is not equal to 1, is created by a FOIL 
multiplication, but the two binomials are not just x plus a constant. One or both of the x’s have a 
coefficient other than one, and as you can see below, that introduces some complications. 

x x x x x x

x x x

x x

(2 3)(5 4) 2 5 2 4 3 5 3 4

10 8 15 12

10 7 12

2

2

− + = ⋅ + ⋅ − ⋅ − ⋅

= + − −

= − −

To go the opposite way and factor x x10 7 122 − − , you’ll still need to find two numbers that 
multiply to -12, but you’ll also need to find factors of 10, and because two of the four multiplica-
tions involve a factor of -12 and a factor of 10, neither pair of factors simply adds to the -7 coef-
ficient of the middle term. You’ll need to do a little more investigating. 

Take a look at the pattern of the multiplication.

px r qx t px qx px t r qx r t
pq x pt qr x rt

+( ) +( ) = ⋅ + ⋅ + ⋅ + ⋅
= ( ) + +( ) +2

When you’re asked to factor a trinomial in which the coefficient of the x2 term is a number other 
than 1, the factors of that x2 coefficient a, as well as the factors of the constant c, affect the middle 
term. The good news is the constant term c is still the product of r and t, the constants in the 
binomial, but the factoring process becomes more a case of trial and error. 

To get through this trial-and-error process as efficiently as possible, make a list of the fac-
tors of the lead coefficient and a list of the factors of the constant. In theory, you want to check 
all the possibilities, in all possible combinations, to see whether the “Inner” and the “Outer” 
from the FOIL rule will combine to form the middle term you need. You need to be very orga-
nized, going down your lists in order and crossing factors off when you’re sure they don’t work.

To make things a little easier, you can make a chart of the possible products and look for a 
pair that will add or subtract to the coefficient of the middle term. To factor 6 5 212x x+ − , first 
notice that the factors of 6 2x  are 1 6x x⋅  and 2 3x x⋅  and the factors of 21 are 1 ⋅ 21 and 3 ⋅ 7. Put the 
factors of 6 2x  down the side of the chart and the factors of 21 across the top. Keep pairs together. 
Then fill in the boxes with the products of the number at the beginning of the row and the top of 
the column.

x x x x x
x x x x x

x x x x x

x x x x x

1 21 3 7
1 1 21 3 7
6 6 126 18 42

2 2 42 6 14

3 3 63 9 21

Look at the numbers on the diagonals of small squares. There’s no way you can get a middle 
term of 5x from 1x and 126x. The other diagonal in that square will give you 6x and 21x, which 
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could add to 27x or subtract to 15x, but you’re looking for 5x, so keep looking. In the bottom-right 
square, 14 and 9 can subtract to 5, so try the numbers at the beginning of those rows and the top 
of those columns. You want to use 2x and 3x as the factors of 6x2 and 3 and 7 as the factors of 21 
and place them so that the inner and outer are 9x and 14x. 

6 5 21 2 3 3 72x x x x+ − = − +( )( )

When you try to place the + and the −, don’t just look at 3 and 7. Instead, look at the inner and the 
outer. The inner is 9x and the outer is 14x. You want the larger one, 14x, to be positive, so put 
the + on the 7 and the − on the 3. 

6 5 21 2 3 3 72x x x x+ − = − +( )( )

Another strategy for locating the correct factors often sounds like it’s going to make the 
problem worse, but if you use it wisely, it can help. It tells you to look at the trinomial and multiply 
the constant term by the coefficient of x2. In the example above, this would mean 6 × 21, and you 
may feel like bigger numbers are not helping, but you do want to look for factors of 126. Instead 
of thinking of 126 or 6 × 21, write the product 6 × 21 as a prime factorization: 6 × 21 = 2 × 3 × 3 × 7. 
You can see it’s possible to regroup those primes into 9 × 14, which subtract to 5. Those are the 
numbers you want, and here is what you’re going to do with them. Set up the two binomials, 
beginning both with 6x. Yes, you’re absolutely right. They can’t both be 6x or the trinomials 
would begin with 36 2x , but that will fix itself in a moment. 

( )( )x x6 6

Now take the 14 and the 9, and think for a minute about signs. You want +5x, so use +14  
and −9. 

6 14 6 9x x+( ) −( )
Now it’s time to get rid of that extra 6. Notice that there’s a common factor of 2 in 6x + 14 and a 
common factor of 3 in 6x − 9. Factor those out because they make the extra factor of 6. Throw 
them away, and you’ll have the correct factors. 

2 3 7 3 2 3
3 7 2 3
x x
x x

+( )⋅ −( )
+( ) −( )

10·4
EXERCISE

Factor each polynomial. 

1.	 3 11 102x x+ + 	 6.	 10 49 52x x− −

2.	 2 3 12x x− + 	 7.	 9 27 202x x− +

3.	 2 7 32x x+ + 	 8.	 18 15 22x x+ +

4.	 12 32 52x x+ + 	 9.	 15 13 62x x− −

5.	 6 17 122x x+ + 	 10.	 4 29 302x x− +
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Special factoring patterns
Most of the time, factoring is a trial-and-error process, but there are a few cases where the prob-
lem is unusual and memorizing is a much better tactic. There are two factoring patterns that 
should be memorized. 

Difference of squares
Most of the expressions you’re asked to factor are trinomials, so you might not expect a bino-
mial like x 2 4−  or 9 162t −  to be factorable. It turns out that when you multiply the sum and 
difference of the same two terms with the FOIL rule, the outer and inner terms add to 0 and you 
produce a square minus a square. The difference of squares, a b2 2− , factors to ( )( ),a b a b+ −   
so x x x2 4 2 2− = + −( )( ) and 9 16 3 4 3 42t t t− = + −( )( ).  

Perfect square trinomial
The perfect square trinomial is one you could figure out how to factor without any memorizing, 
but it’s convenient to have it memorized to save time. When you square a binomial like 2x + 5, the 
first and last terms are squares and the inner and outer are identical. 

( ) ( )( )2 5 2 5 2 5
2 2 5 2 5 2 5 5
4

2x x x
x x x x
x

+ = + +
= ⋅ + ⋅ + ⋅ + ⋅
= 22

2

2 5 2

10 10 25
4 20 25

+ + +
= + +

⋅ ⋅

x x
x x

xsquare squar
 

ee


So ( ) ( ) .ax b ax abx b+ = + +2 2 22  When you see that the first and last terms of a trinomial are per-
fect squares, check the middle term to see if you have a perfect square trinomial. 

10·5
EXERCISE

Factor each polynomial. 

1.	 x 2 49− 	 6.	 9 42 492y y+ +

2.	 x x2 6 9+ + 	 7.	 4 812x −

3.	 36 12t − 	 8.	 4 4 12x x+ +

4.	 9 24 162t t− + 	 9.	 16 92 2a y−

5.	 16 2− y 	 10.	 x x2 12 36− +
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Factoring by grouping
When you’re asked to factor a binomial, you should look for a common factor first, and then, 
whether you factored out a common factor or not, ask yourself if the binomial is a difference of 
squares. There is nothing else (that you know about) that works on binomials. The common 
experience will be factoring trinomials. There again you should look for a GCF and then try to 
factor to two binomials. 

Occasionally, you’ll be asked to factor a polynomial with more than three terms, and of 
course, you’ll look for a common factor. There is one other tactic, called factoring by grouping, 
that may let you do further factoring, especially on polynomials with four terms. 

The good news is that factoring by grouping just uses the factoring techniques you already 
know in a slightly different way. Take a look at 2 5 8 203 2x x x− − + . That coefficient of −5 in the 
squared term means that there’s no factor common to all four terms, but don’t give up. Break the 
polynomial into two groups of two terms each. 

2 5 8 203 2x x x− − +

Factor the GCF from the first two terms, and then factor out the GCF from the second two terms. 

x x x2 2 5 4 2 5−( ) − −( )

If, after you remove the common factors, the two binomials in the parentheses match, you 
can treat that binomial as a common factor. Think y x= −2 5, and the expression is 
x y y y x2 24 4− = −( ). Put the 2x − 5 back in there and you have 2 5 42x x−( ) −( ). Notice that you 
can factor x2 4− . That won’t always happen, but you should look for it. 

2 5 8 20 2 5 4 2 5

2 5 4

2 5 2 2

3 2 2

2

x x x x x x

x x

x x x

− − + = −( ) − −( )
= −( ) −( )
= −( ) +( ) −(( )

10·6
EXERCISE

Use factoring by grouping to factor each polynomial as completely as possible.

1.	 x x x3 22 2+ − − 	 6.	 2 3 4 6xz z x+ + +

2.	 x x x3 23 4 12− − + 	 7.	 5 3 5 3xy y x+ + +

3.	 x x x3 22 100 200+ − − 	 8.	 x y y x2 2 2 24 4− − +

4.	 2 8 43 2x x x− + − 	 9.	 x y x y2 2 2 29 9− + −

5.	 3 5 9 15xy y x+ − − 	 10.	 x y y x2 2 2 24 4+ + +
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Calculator notes #6
The other operation you’re often called up to perform when working with polynomials is fac-
toring. You can check your factors by comparing your answer with the original problem as 
described in Calculator Notes #5, but what if you haven’t gotten an answer because you’re 
stumped? 

First, make sure that you’ve done a thorough, well-organized attempt to find factors on your 
own. If you’re truly stuck, you’ll want to know whether the polynomial has any real factors and, 
if it does, whether they’re rational, because you’re not expected to guess at irrational numbers. 
Use an idea from Calculator Notes #1, where you found the x-intercept of the graph to find the 
solution of the equation. If you can find the solutions of a polynomial equation that way, you can 
work backwards to the factors. 

•	 Go to the Y =  menu and clear old equations.
•	 Enter the polynomial that you’re trying to factor in the Y1= slot, and graph. Adjust the 

window so that you can see the x-intercepts. Expect as many x-intercepts as the degree of 
the polynomial, but there may be fewer. 

 

•	 If you see no x-intercepts, make sure it’s not just a window problem. ZOOM  2: Zoom In 
and ZOOM  3: Zoom Out can help. If there really are no x-intercepts, this polynomial has 
no real zeros. There is no real number that you can plug in for x to make the polynomial 
equal 0. The polynomial cannot be factored.

•	 If you see one or more x-intercepts, use 2nd  TRACE  2: Zero to find them. 
•	 If the x-intercept is an integer, like 7, then your factor is x – 7.
•	 If the x-intercept is not an integer, it will display as a decimal. If the decimal termi-

nates, like 3.875, it’s rational. If the decimal repeats a pattern, like 2.666666…, it’s 
rational. If the x-intercept is an irrational number, its decimal does not terminate and 
does not repeat any pattern, but the calculator will display as much of that decimal as 
it has space to show. You have to make the judgment call about whether you think the 
decimal you’re looking at is rational or irrational. 

 

If the x-intercept is rational, you’ll want to change it from decimal form to fraction form. 
Hopefully, you recognize the decimal equivalents of common fractions, but if not, type the 
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decimal on the main screen of your calculator, and press MATH . Your cursor will be on 1: Frac. 
Press ENTER  twice and the fraction equivalent will display.

Once the x-intercept is in fraction form, start with (x − fraction), and then change to a more 
traditional format. If the x-intercept is − 4

3 , for example, start with x − −( )( )4
3  and simplify to 

x +( )4
3 . Get to the more traditional form by multiplying both terms by the denominator: 

x x+( ) ⇒ +( )4
3 3 4 . If the x-intercept is 1.2, x x x−( ) = −( ) ⇒ −( )1 2 5 66

5. . 
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·11·

Once you learn to perform a mathematical operation, it is common to think about 
how to reverse it. You undo addition with subtraction. You reverse multiplication 
by division. So once you learn about exponents, or raising a number to a power, it 
is natural to consider how to reverse that process. If you know the result of 
exponentiation, of raising a number to a power, how do you find your way back to 
the number that was the base of the power?

Powers and roots
For every exponent, every power to which you can raise a base, there is a corre-
sponding root to take you back to the original base. If, for some numbers a and b, 
a2 = b, then a is the square root of b. Seven is the square root of 49 because 72 = 49. 
The square root is the root you encounter most often, just as the second power, or 
square, is the exponent you see most often, but there is a third, or cube root, a 
fourth root, and a root to “undo” every power. Square roots are written using a 
radical sign: 49 7=  or, in general, b a= . The expression under the radical sign 
is called the radicand. The word radical comes from the Latin word radix, mean-
ing “root.”

You can write other roots in a similar fashion using other powers. Roots 
other than the square root are indicated by placing a small number, called the 
index, in the crook of the radical sign. For example, because 23 is equal to 8, two 
is the cube root of eight, written 8 23 = . When no index is shown, the square root 
is assumed.

When the index of the radical is even, as in square roots, there are both posi-
tive and negative roots. Seven is the square root of 49 because 72 = 49, but (−7)2 = 
49 as well, so 49 has two square roots, 7 and −7. The positive square root is consid-

ered the principal square root, and we agree that b  will denote the principal root 

of b. We’ll write − b if we want the negative square root or ± b  if we want both. 
There is one only real root when the index is odd. The third, or cube, root of 

64 is 4, because 4 643 =  but −( ) = −4 643  not 64. The cube root of −64 is −4.

Radicals

Tools in this chapter:

◆	 Simplify radicals
◆	 Rationalize denominators
◆	 Operate with radicals
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Notice that although you’ve probably learned that there is no real square root of a negative 
number (and that’s true for all even roots), there is a real cube root of a negative number (and that 
extends to all odd roots). Because −( ) = −4 643 , the cube root of −64 is −4. 

Positive number Negative number
Even root 2 real roots, 1 positive and 1 negative No real roots
Odd root 1 real positive root 1 real negative root

11·1
EXERCISE

Find each of the following roots, if possible. (Try not to use a calculator.)

1.	 36 	 6.	 144

2.	 − 81 	 7.	 − 164

3.	 ± 25 	 8.	 −325

4.	 273 	 9.	 1 0003 ,

5.	 −1253 	 10.	 −814

Estimating roots
In the previous exercise, all the radicands, the numbers under the radical sign, were chosen  
because they were perfect squares, or perfect cubes, or perfect whatever-power-matched-the-
index. There are many, many numbers that don’t fit this description. The numbers 81 and 100 are 
both perfect squares, 92 and 102, respectively, but this means that all the numbers between them 
are not. This means that many numbers will not have tidy integer square roots. (Although we’re 
looking at square roots right now, the same can be said for other roots.)

Calculators are a tremendous help when working with roots because they will give you an 
estimate of the root accurate to 7 or 8 decimal places. (Before calculators, you had to go look them 
up in a book of tables and only get 3 or 4 decimal places.) But for some work you don’t need that 
much information. 

Suppose that you are working with 67. You know that 8 642 =  and 9 812 = , and you know 
that 67 is between 64 and 81, closer to 64. This means that 67 is between 8 and 9, closer to 8, and 
that may be enough to let you estimate your answer. You can do the same with other roots. If you 
know that 3 273 =  and 4 643 = , then 27 59 643 3 3< < . You can estimate that 593  is between 3 
and 4, and closer to 4. 

Rational or irrational?
The real numbers is the name we give to the set of all numbers used in arithmetic. The real num-
bers include integers, fractions, and decimals, and you’ve probably seen that those subsets over-
lap. Integers can be written as fractions by giving them a denominator of 1, and fractions can be 
written as decimals. Integers, fractions, and decimals are subsets of the real numbers that overlap 
or intersect. The real numbers can be divided into two disjoint, or nonoverlapping, subsets called 
the rational numbers and the irrational numbers. 
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The rational numbers are all numbers that can be written as a ratio of two integers. In simple 
language, they’re numbers that can be written as fractions. The irrational numbers are the num-
bers that can’t be written that way. Rational numbers are easy to think of: ½, −7, and 1.7 are  

examples. The number ½ is already a fraction, −7 can be −7
1

, and 1.7 can be 17
10

. Not all decimals 

are rational, however. Decimals that terminate, like 0.5 or 1.7, can be written as fractions, and 
repeating decimals, like 0.3333…, which is equal to ⅓, are rational, but decimals that do not ter-
minate and do not repeat cannot be expressed as the ratio of two integers and so are irrational. 

Irrational numbers probably don’t come to mind as quickly, so you may be surprised to 
know that there are more irrational numbers than rational numbers. Once you find one irrational 
number, that number times any rational number gives you another irrational number. So if you 
found 2 irrational numbers, you actually would have twice as many irrationals as rationals, and 
there are many more than 2 irrational numbers. Many roots are irrational and therefore are deci-
mals that don’t terminate and don’t repeat. For example, 2 1.414213562. ...≈  This decimal goes 
on forever, and no matter how many digits of it you write, when you square that number, it won’t 
give you exactly 2. It will come extremely close but not exactly equal. 

Exact or approximate?
Because you can’t write all the digits of a decimal that doesn’t end and doesn’t repeat, when 
a root is an irrational number and you try to write it as a decimal, you only get an approxi-
mate answer. There are times when an approximate answer is good enough, but at other 
times, you’ll want to express the exact value of the root. In those cases, you’ll have to leave 
the number in radical form, but you’ll want to try to rewrite it as a rational number times a 
simpler radical. 

11·2
EXERCISE

Place each of the following roots between two consecutive integers. Then make your best 
guess at the approximate value of the root, to the nearest tenth. (Don’t use your calculator 
to find the root. Make an educated guess. If you must, you can use your calculator to check.)

1.	 11 	 6.	 20

2.	 90 	 7.	 103

3.	 150 	 8.	 163

4.	 48 	 9.	 303

5.	 3 	 10.	 813 −

Simplifying radical expressions
To make radicals easier to work with, you’ll want to put them in simplest radical form. Simplest 
radical form means the expression contains only one radical, the radicand is as small as possible, 
and there is no radical in the denominator (or divisor) of a quotient. If there is any arithmetic  
to be done, do it so that only one radical remains. The radical 48 is a single radical, but  
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48 = 16 × 3, and 16 is a perfect square, so it’s possible to write 48 as 16 3⋅ , which is equivalent 
to 4 3. Always try to have the smallest possible radicand. 

Simplest radical form
The principal rule for simplifying radicals tells us that ab a b= . This rule lets you turn the 
product of two radicals into a single radical, and it lets you rewrite a radical as a multiple of a 
smaller radical. You can rewrite 18 2 as 36, or simply 6, and you can take 8 and realize  
that it’s equivalent to 4 2, which is equal to 2 2 because the square root of 4 is 2. By looking 
for perfect square factors of the radicand and applying this rule, you can rewrite radical expres-
sions with smaller radicands. 

When variables appear under radicals, it’s still possible to simplify if you work carefully:  
x x33 = , and x x x x x x x43 33 33 3 3= ⋅ = ⋅ = . For even roots, like square roots, you need a bit more 

care. It’s easy to think that x x2 =  and you’ll often see that written, but it’s not technically correct. 
If we write 42 , that’s 16, which is 4. We said that 16 would mean the principal square root, so 

we only need 4, not −4. If we write −( )4 2 , however, that’s also 16, or 4. Notice the original had 

−4, but we ended with 4. When you write x2 , you don’t know if x is a positive number or a nega-
tive number, but you want a positive result. To be sure we get that, we say x x2 = , the absolute 
value of x. 

Because roots “undo” powers, they can also be expressed using exponents. If you have some 
number x and you cube it, you have x3. Taking the cube root of x3 should undo the cubing and 
leave you with x or x1 again. What exponent would do that? Remember the rule for a power raised 
to a power? Think about the question as =x x( )3 ? . The power to a power rule tells us to mul-

tiply the exponents, so 3 times what will equal 1? Raising x1 to the 1
3

 power is the same as taking 

the cube root. ( ) = = =( )x x x x3
1

3 3 1
3 1  and ( ) ( )( )( )= = = =( )+ +x x x x x x x

1
3

3 1
3

1
3

1
3

1
3

1
3

1
3 1 .

Every power has a corresponding root, and every root can be expressed using a frac-
tional exponent. The square root of a number y is y

1
2. The tenth root of z is z

1
10. In general, 

for every power n, there is a corresponding nth root that can be expressed using the fractional 
exponent n

1 . 

To simplify x y121 5 3 , you may want to rewrite the expression using a fractional exponent: 
x y(121 )5 3 1

2. This will allow you to use rules for exponents to simplify. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( )=

= ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

=

x y x y

x x y y

x x y y

x x y y

x y xy

121 121

11

11

11

11 ( )

5 3
1

2 1
2 5

1
2 3

1
2

2
1

2 4
1

2 2
1

2

4
1

2 1
2 2

1
2 1

2

2 1
2

1
2

2 1
2
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11·3
EXERCISE

Put each expression in simplest radical form. 

1.  32 	 6.  12 3y

2.  72 	 7.  50 5ab

3.  a3 	 8.  27 3 2x y

4.  98 	 9.  49 3a

5.  8 2x 	 10.  48 7 3 2a b c

Rationalizing denominators
Because radicals are often irrational, having a radical in the denominator of a fraction can make 

it hard to estimate the quotient. If you have 5
2

, you can think 5 is a little more than 2, so if you 

divide it by 2, you get a little more than 1. When you look at 
2
5

, on the other hand, it’s harder to 

do that kind of approximation. This is one reason why you don’t want radicals in the denominator. 
If the denominator of an expression is a radical or a multiple of a radical, you can remove the 

radical, or rationalize the denominator, by multiplying the numerator and denominator of the frac-
tion by the radical in the denominator. This is the same method you use to express fractions with 
a common denominator. Multiplying both numerator and denominator by the same number is 
equivalent to multiplying by 1, so it changes the appearance of the fraction but not the value. 

6
5

6
5

5
5

6 5
25

6 5
5

= ⋅ = =

If the denominator is a sum or difference that includes a radical, you will still want to multiply 
the numerator and denominator by the same number, but multiplying by just the radical will not 
be effective. You will need to multiply by the conjugate of the denominator, the same two terms 
connected by the opposite sign. The conjugate of 3 2+  is 3 2− , and the conjugate of 7 4−  is 

7 4+ .  Multiplying by the conjugate eliminates the radical because when you multiply the sum 
and difference of the same two terms using the FOIL rule, the middle terms, where the radicals 
would have been, add to 0. 

4
2 3

4
2 3

2 3
2 3

4 2 3

2 3 2 3

8 4 3
4 3

8
+

=
+

⋅ −
−

=
−( )

+( ) −( ) = −
−

= −− 4 3
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11·4
EXERCISE

Rationalize the denominators and put each expression in simplest radical form. 

1.	
3

6
	   6. 

18

5 3−

2.	
24

5
	   7. 

20

1 5−

3.	
10

2
	   8. 

7 5

7 5

−
+

4. 
15

5
	   9. 

3

5 3−

5. 
20 20

4 5
	 10. 

3 4

3 2

+
−

Adding and subtracting radicals
Only like radicals can be combined by addition or subtraction, and they combine like variable 
terms by adding or subtracting the coefficients, the numbers in front. 5 2 3 2 8 2+ = , but 

2 3+ cannot be combined. 
Problems that look like unlike radicals at first glance may simplify down to like radicals. 

When you need to combine radicals by addition or subtraction, first put each term in simplest 
radical form, and then combine like radicals. 

27 48 9 3 16 3 3 3 4 3 7 3+ = + = + =

11·5
EXERCISE

Simplify each expression as completely as possible. 

1.	 3 3 27+ 	   6.  2 7 28+

2.	 5 20+ 	   7.  99 3 44−

3.	 48 12− 	   8.  3 96 24−

4.	 200 8+ 	   9.  27 5 3 48+ −

5.	 45 80+ 	 10.  3 45 2 20 125− +

Solving radical equations
Radical equations are equations that contain one or more radicals with the variable in the radi-
cand. The key to solving radical equations is isolating the radical and then raising both sides of 
the equation to a power so that the radical sign is lifted. 
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One radical
To solve an equation containing one radical, isolate the radical by moving all terms that do not 
involve the radical to the other side. Square both sides of the equation, and solve the resulting 
equation. Be sure to check solutions in the original equation to eliminate any extraneous solu-
tions. Extraneous solutions are values that do not satisfy the equation, even though you’ve done 
nothing wrong. They often turn up when solving radical equations.

5 3 2 4 29

5 3 2 25

3 2 5
3 2 25

3 27
9

x

x

x
x

x
x

− + =

− =

− =
− =

=
=

11·6
EXERCISE

Solve each equation. Check your answers in the original equations. If the equation cannot 
be solved, write No solution.

1.	 x = 3 	   6.  3 2z = −

2.	 y = −4 	   7.  x − =1 4

3.	 x − =9 0 	   8.  2 3 7 0x − − =

4.	 − =3 3x 	   9.  2 5 8 0x + − =

5.	 3 2 7= −y 	 10.  3 4 3 2 3x − − =

Two radicals
When an equation contains two radicals, choose one to eliminate first. Isolate that radical, and 
square both sides. This may mean that you need to FOIL one side, and you’ll probably find that 
while squaring the isolated radical eliminates that radical, FOIL multiplication on the other side 
will lift one radical sign but introduce another. Just isolate the remaining radical, square both 
sides again, and solve the resulting equation. Be sure to check solutions in the original equation. 
Extraneous solutions are common.

x x

x x

x x

x

+ + + =

+ = − +

+( ) = − +( )
+ = −

3 10 7

3 7 10

3 7 10

3 49

2 2

114 10 10

3 59 14 10

56 14 10

4 1

x x

x x x

x

x

+ + +

+ = + − +

− = − +

= + 00
16 10

6
= +
=

x
x
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11·7
EXERCISE

Solve each equation. Check for extraneous solutions. 

1.	 4 5 6 5x x+ = − 	 6.  2 7 1 2 3x x− + = +

2.	 3 1 11 0x x+ − + = 	 7.  x x− + = −7 1

3.	 4 2 1 3 3 4x x+ = + 	 8.  x x− + =16 2

4.	 1 1 32+ − = +x x 	 9.  x x+ = + −2 4 2

5.	 x x+ − = − −1 3 2 	 10.  x x+ = − +5 2 1

Graphing square root equations
The graph of a square root equation looks like half of a parabola lying on its side. The graph 
of y x=  begins at the origin and forms a slowly rising curve in the first quadrant, as shown in 
Figure 11.1. A negative multiplier in front of the radical will flip the graph over the x-axis.

Figure 11.1  The top half of a parabola on its 
side is the graph of the square root function.

Because negative numbers have no square roots in the real numbers, the graph only exists for 
values of x that make the radicand positive. The graph of y x h= −  begins at (h, 0), and the graph 
of y x h= +  begins at (−h, 0). A constant added on the end of the equation moves the graph up 
or down. Consider where the graph exists, what its domain is, before choosing x-values for your 
table of values. 

11·8
EXERCISE

Graph each function by making a table of values and plotting points. 

1.	 y x= 	   6.  y x= 2

2.	 y x= − 3 	   7.  y x= −

3.	 y x= +1 	   8.  y x= − +2 3 1

4.	 y x= − 4 	   9.  y x= − +4 2

5.	 y x= + 2 	 10.  y x= − + −3 2 5 4
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·12·

Quadratic equations are equations that contain a term in which the variable is 
squared. The standard form of a quadratic equation is ax bx c2 0+ + = , but you 
may have to do some rearranging to get the equation you’re given into that form. 
The x-term or the constant term may be missing if b equals 0 or c equals 0, but if 
the x2 term is missing, it’s not a quadratic equation. The graph of a quadratic equa-
tion y ax bx c= + +2  has a particular shape called a parabola. 

Solving by square roots
If a quadratic equation contains just a squared term and a constant term, you can 
solve it by moving the terms to opposite sides of the equal sign and taking the 
square root of both sides. Remember that there is both a positive and a negative 
square root of any positive number. 

2 64 0

2 64

32

32

4 2

2

2

2

x

x

x

x

− =

=

=

= ±

= ±

If the constant is not a perfect square, leave solutions in simplest radical form, 
unless there’s a very good reason to use a decimal approximation.

Quadratic equations 
and their graphs

Tools in this chapter:

◆	 Solve quadratic equations by factoring or quadratic formula
◆	 Understand when quadratic equations have two solutions, one solution, 

or no solution
◆	 Graph quadratic functions and square root functions
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12·1
EXERCISE

Solve each equation by isolating the square and taking the square root of both sides. 

1.  x 2 64= 	   6.  t 2 1000 0− =

2.  x 2 16 0− = 	   7.  2 150 02y − =

3.  x 2 8 17− = 	   8.  9 42x =

4.  x 2 18= 	   9.  64 252y =

5.  3 482x = 	 10.  4 15 932x − =

Completing the square
If the quadratic equation has just a square term and a constant term, you can solve it by taking 
the square root of both sides. If it has three terms that happen to form a perfect square trinomial, 
you can rewrite it as the square of a binomial and then solve by taking the square root of both 
sides. Much of the time, however, the polynomial is not a perfect square.

Completing the square is a process that turns one side of the equation into a perfect square 
trinomial so that you can solve by taking the square root of both sides. Of course, completing the 
square doesn’t just magically change one side of the equation. It adds the same number to both 
sides so that the new equation is equivalent to the original. The key is to know what to add.

To complete the square, move the constant to the opposite side of the equation from the x2 
and x terms. 

3 24 15 0

3 24 15

2

2

x x

x x

+ + =

+ = −

Divide both sides of the equation by the coefficient of x2. 

3 24 15

8 5

2

2

x x

x x

+ = −

+ = −

Take half the coefficient of x, square it, and add the result to both sides. Write the polynomial as 
a square.

x x

x x

x x

x

2

2 2 2

2

2

8 5

8 4 5 4

8 16 5 16

4 11

+ = −

+ + = − +

+ + = − +

+ =( )
Solve the equation by taking the square root of both sides and then isolating the variable. 

( )x

x

x

+ =

+ = ±

= − ±

4 11

4 11

4 11

2
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12·2
EXERCISE

Solve each equation. Do not FOIL the binomial square. Take the square root of both sides. 
Give answers in simplest radical form. 

1.  ( )x − =2 252 	   4.  ( )x + =1 752

2.  ( )x + =1 92 	   5.  ( )3 5 122x − =

3.  ( )x − =3 482

Complete the square and solve the equation. 

6.  y y2 8 7 0− − = 	   9.  a a2 5 3 0+ − =

7.  x x2 5 14− = 	 10.  t t2 10 8= −

8.  x x2 4 4 0+ − = 	

The quadratic formula
Completing the square is a very effective method for solving quadratic equations, but it can get 
complicated and the numbers can get messy, so you soon find yourself wishing for an easier way. 
The quadratic formula is a shortcut to the solution you would have obtained by completing the 
square. Using it is a bit complicated, but easier than doing all the work of completing the square. 

If ax bx c2 0+ + = , then x b b ac
a

= − ± −2 4
2

. You just pick the values of a, b, and c out of the 
equation, plug them into the formula, and simplify. Be certain your equation is in ax bx c2 0+ + =  
form before deciding on the values of a, b, and c. 

To solve 5 2 3 2x x= − ,  first put the equation in standard form. Compare 3 5 2 02x x+ − =  to 
ax bx c2 0+ + = , and you find that a = 3,  b = 5,  and c = −2.  Plug those values into the formula.

x b b ac
a

= − ± −

= − ± − ⋅ ⋅−
⋅

2

2

4
2

5 5 4 3 2
2 3

Follow the order of operations, and watch your signs as you simplify. 

x = − ± +

= − ±

= − ±

5 25 24
6

5 49
6

5 7
6
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The two solutions that are typical of quadratic equations come from that ± sign.

x

x x

= − ±

= − + = − −

= = −

= = −

5 7
6

5 7
6

5 7
6

2
6

12
6

1
3

2

or

The discriminant
One portion of the quadratic formula, called the discriminant, can give you useful information 
about the number and type of solutions your equation has. The radicand, b2 − 4ac, tells you 
whether you have one real solution, two real solutions, or no real solutions, and sometimes that’s 
all you need to know.

If b2 − 4ac is positive, the equation has two real solutions. You have a positive number under 
the radical, so you get the positive and the negative square roots and produce two solutions. 
If b2 − 4ac equals 0, the positive and negative square roots are both 0, so you end up with only one 

solution, x b
a

= −
2

.  This is sometimes called a double root because it really is two solutions that are 

exactly the same. If b2 − 4ac is negative, you know that it’s impossible to find the square root of a 
negative number in the real numbers. (Later in your math career, you’ll learn about a set of 
numbers larger than the reals, where negative numbers do have square roots.) So if the discrimi-
nant is negative, there are no real solutions.

You can get one more bit of information from the discriminant. If the discriminant is posi-
tive and it’s a perfect square, the two solutions will be rational numbers, but if the discriminant 
is positive and not a perfect square, the two solutions will be irrational.

12·3
EXERCISE

Solve each equation by the quadratic formula. If necessary, leave answers in simplest radical 
form. 

1.  x x2 4 21 0+ − = 	   6.  t t2 6 15 0+ − =

2.  t t2 10 3= − 	   7.  4 32x x− =

3.  y y2 4 32− = 	   8.  3 1 22x x− =

4.  x x2 6= + 	   9.  x x x+ = −5 3 2

5.  6 92x x+ = 	 10.  6 22x x− =

12_Wheater_Ch12_p111-124.indd   114 15/03/22   11:27 AM



	 Quadratic equations and their graphs	 115

Use the discriminant to tell whether each equation has two rational solutions, two irrational solutions, one 
rational solution, or no real solutions.

11.  x x2 5 9 0+ − = 	 16.  2 5 3 02x x+ + =

12.  x x2 3 5 0− + = 	 17.  5 12 5 02x x+ + =

13.  x x2 3 4 0+ − = 	 18.  2 3 5 02x x+ + =

14.  x x2 6 9 0+ + = 	 19.  4 4 1 02x x+ + =

15.  3 6 1 02x x+ + = 	 20.  − + + =3 3 5 02x x

Solving by factoring
The quadratic formula will give you solutions for any quadratic equation, but it may require com-
plicated calculations. Sometimes there’s no way around this. Completing the square is compli-
cated, the quadratic formula can be complicated, and irrational solutions aren’t easy. In other 
cases, however, the quadratic polynomial can be factored and the equation can be solved by 
applying the zero product property. If the product of two factors is 0, then at least one of the fac-
tors is 0. If the quadratic can be factored, that’s probably the easiest way to solve. 

First, put the equation in standard form. With all terms on one side of the equation equal to 0,  
factor the quadratic expression. Set each factor equal to 0 and solve the resulting equations. 

5 4 6
6 5 4 0

2 1 3 4 0
2 1 0 3 4

2

2

x x
x x

x x
x x

= −
+ − =

− + =
− = + =

( )( )
00

2 1 3 4
1
2

4
3

x x

x x

= = −

= = −
or

12·4
EXERCISE

Solve each equation by factoring. 

1.  x x2 5 6 0+ + = 	   6.  x x2 5 6+ =

2.  x x2 12 7+ = 	   7.  x x2 3 0+ =

3.  y y y2 3 8+ = + 	   8.  x x2 5=

4.  a a2 3 4 6− − = 	   9.  x x x2 21 3 3− = −

5.  20 2= +x x 	 10.  2 15 02x x− − =
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Graphing quadratic functions 
Graphing an equation of the form y ax bx c= + +2  produces a cup-shaped graph called a parabola. 
Some information about the graph can be gathered from the equation without much effort and 
can help you construct a table of values and plot the graph. If a is a positive number, the parabola 
opens upward; if a is negative, the parabola opens downward (see Figure 12.1). The x-intercepts 
are the solutions of the equation ax bx c2 0+ + =  and the y-intercept is (0, c). 

Figure 12.1  The coefficient of the square 
term tells you whether the parabola opens up 
or down.

a < 0

a > 0

Finding the axis of symmetry and vertex
The axis of symmetry of a parabola is an imaginary line through the center of the parabola. The 
parabola is symmetric about this line. If you were to fold the graph along the axis of symmetry, 
the two sides of the parabola would match. The vertex, or turning point, of the parabola sits right 

on the axis of symmetry. The equation of the vertical line that is the axis of symmetry is x b
a

= −
2

. 

Once the axis of symmetry is known, plugging that x-value into the equation of the parabola will 
give you the y-coordinate of the vertex. 

To graph y x x= + +2 4 1,  notice that the x2-term is positive, so the parabola will open up and 
its y-intercept will be (0, 1). You’ll need the quadratic formula to find the x-intercepts.

x b b ac
a

= − ± −

= − ± − ⋅ ⋅
⋅

= − ± − = − ± = −

2

2

4
2

4 4 4 1 1
2 1

4 16 4
2

4 12
2

4 ±± = − ±2 3
2

2 3

This is a good time to use a decimal approximation because the x-axis is not usually marked with 

radicals. So − + ≈ −2 3 0 3.  and − − ≈ −2 3 3 7. . You’ll have to estimate those x-intercepts, but even 
an estimate will help you line up the graph correctly. 

The axis of symmetry for y x x= + +2 4 1  is x b
a

= − = −
⋅

= −
2

4
2 1

2, so the parabola will be  

symmetric across the vertical line x = −2. Plug −2 into y x x= + +2 4 1, and you find that the  
y-coordinate of the vertex is y = − + − + = − + = −( ) ( ) .2 4 2 1 4 8 1 32  The vertex is (−2, −3).
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12·5
EXERCISE

Find the x- and y-intercepts of each parabola. 

1.  y x x= − +2 4 3 	   4.  y x x= − +2 7 12

2.  y x x= − −2 4 5 	   5.  y x x= + −2 12

3.  y x x= +2 2

Find the axis of symmetry and vertex of each parabola. 

6.  y x x= − +2 8 15 	   9.  y x x= − + −2 6 7

7.  y x x= + −2 4 2 	 10.  y x x= − + +2 4 7

8.  y x x= − +2 4 32 	

Table of values
Building a table of values is the most fundamental method of drawing the graph of an equa-
tion. Choosing values for x and substituting each one into the equation to find the corre-
sponding value of y will let you plot enough points to graph any equation. When graphing a 
quadratic equation (or other nonlinear equation), it’s important to make wise choices of  
x-values. Finding the axis of symmetry, vertex, and intercepts first will tell you where the 
interesting part of the graph is so that you can choose x-values on both sides of the vertex, 
but not too far away.

In the previous example, we were getting ready to graph y = x2 + 4x + 1, and we already had 
four points on the graph. We knew the approximate values of the two x-intercepts, we knew the 
y-intercept, and we knew the vertex.

x      −3.7      −2      −0.3      0
y         0             −3          0           1

Choose a few more values for x on both sides of the vertex to finish your table. Plot the points and 
connect them with a smooth curve as shown in Figure 12.2.

x    −4    −3.7    −3    −2     −1    −0.3    0
y       1       0      −2    −3    −2        0       1
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12·6
EXERCISE

Graph each quadratic function. Use the vertex and intercepts to help make a table of values. 

1.  y x= −2 12 	   6.  y x x= − + +2 2 5

2.  y x x= − +2 8 	   7.  y x x= + +2 6 9

3.  y x x= + −2 2 15 	   8.  y x= −4 2

4.  y x x= − −2 2 	   9.  y x x= + −2 12

5.  y x x= − +2 4 3 	 10.  y x= −2 9

Problems solved with quadratic equations
Many problems can be solved by using a linear equation, but some problems require other types 
of equations. Quadratic equations come up frequently and easily. A direct variation equation is 
usually solved with a linear equation of the form y kx= , but if the problem were to say “y varies 
directly with the square of x,” the equation becomes y kx= 2. This is a simple quadratic equation. 

When solving these problems, remember to simplify each side of the equation and then 
move all terms to one side so that you have an equation of the form ax bx c2 0+ + = . Solve by fac-
toring, if possible, or use the quadratic formula. 

There are many problems in which this change of language, talking about the square of 
some variable, leads to a quadratic equation. In other problems, the squaring is not mentioned 
directly but arises from a formula or because quantities in the problem need to be multiplied. 

Figure 12.2  The graph of y = x2 + 4x + 1.
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Pythagorean theorem problems
One rule you’ve probably used many times that leads to equations with squares is the Pythagorean 
theorem. This right triangle relationship that says that if a and b are the lengths of the legs of a right 
triangle, the length of the hypotenuse, c, can be found using the rule c a b2 2 2= + . 

The longer leg of a right triangle is 14 inches longer than the shorter leg and 2 inches shorter 
than the hypotenuse. Find the lengths of the three sides. 

Let x = the length of the shorter leg in inches
Let x + 14 = the length of the longer leg in inches

Let (x + 14) + 2 = x + 16 = the length of the hypotenuse

c a b

x x x
x x x x x

x x

2 2 2

2 2 2

2 2 2

2

16 14
32 256 28 196

32 2

= +

+( ) = + +( )
+ + = + + +

+ + 556 2 28 196
32 256 28 196

256 4 196
0 4 60

2

2

2

2

= + +
+ = + +

= − +
= − −
+

x x
x x x

x x
x x

x 66 10 0
6 0

6
10 0
10

( ) −( ) =
+ =
= −

− =
=

x
x
x

x
x  

It is not reasonable to have a negative side length, so the shorter leg is 10 inches, the longer leg is 
10 + 14 = 24 inches, and the hypotenuse is 24 + 2 = 26 inches. 

Area problems
Area problems often give rise to quadratic equations because they require that you multiply 
length times width or base times height. If both quantities involve the variable, the multiplication 
results in a variable squared. 

If one side of a square is increased by 3 feet and the adjacent side is decreased by 2 feet, a 
rectangle is created that has an area of 36 square feet. Find the area of the original square. 

Let x = the length of a side of the square, in feet
Let x + 3 = the length of the longer side of the rectangle
Let x − 2 = the length of the shorter side of the rectangle

The area of the rectangle is 36 square feet.

x x
x x
x x
x x

x
x

x
x

+( ) −( ) =
+ − =
+ − =

+( ) −( ) =
+ =
= −

− =

3 2 36
6 36
42 0

7 6 0
7 0

7
6 0

2

2

== 6  
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A square cannot have a side with a negative length, so the side of the square is 6 feet, and the 
area of the square is 36 square feet. 

Vertical motion problems
When an object is dropped from a height or thrown upward and allowed to fall back to Earth, its 
height at any time after it is released depends on three factors: the height from which it was released, 
the force with which it was thrown, and the force of gravity pulling it back to Earth. This relation-
ship is summarized by the function h t gt vt s( ) = − + +1

2
2 . In this equation h(t) is the height of the 

object at time t, g is the acceleration due to gravity (32 feet per second per second in customary 
units, or 9.8 meters per second per second in metric), and s is the starting height of the object. The 
v in the middle term refers to the initial velocity of the object. If the object is thrown upward, v is a 
positive number. If the object is thrown down from a height, v is negative, but if the object is simply 
released and allowed to fall, v = 0. Be sure to check that the units of measurement are consistent. 

The chart below summarizes the different forms of the function for different circumstances. 

Customary units Metric units
Dropped h t t s( ) = − +16 2 h t t s( ) .= − +4 9 2

Thrown h t t vt s( ) = − + +16 2 h t t vt s( ) .= − + +4 9 2

Problems about dropped objects can usually be solved by the square root method, but prob-
lems about objects thrown will often require the quadratic formula. Most will have two solutions, 
but only one will make sense in the context of the problem. A negative number for time would 
refer to before it was thrown, which is not reasonable, so the positive solution would be the one 
you want. If there are two positive values for time, one indicates the time at which the object 
reaches that height on the way up, and the other on the way down. 

Mr. Patel and his daughter, Deva, like to play catch after dinner. Mr. Patel throws the ball to 
Deva with an initial velocity of 20 meters per second. When it leaves his hand, it is 2 meters above 
the ground. Deva is most successful in catching the ball when it is 1 meter above the ground. How 
long after her father throws the ball to Deva will it be 1 meter off the ground?

Let t = the time, in seconds, at which the ball is one meter off the ground
Let 1

2
1
2 9 8 4 9g = ( ) =. .  meters per second per second

Let v = 20 meters per second
Let s = 2 meters

The particular equation is h t t t( ) = − + +4 9 20 22. .
Find t when h(t) = 1.

Solve 1 4 9 20 22= − + +. t t  with quadratic formula.

( ) ( )( )
( )

= − + +

= − + +

= − = =

= − ± −

=
− ± − −

−

t t

t t

a b c

x b b ac
a

x

1 4.9 20 2

0 4.9 20 1

4.9 20 1

4
2

20 20 4 4.9 1
2 4.9

2

2

2

2
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= − ± +
−

= − ±
−

= − +
−

≈
−

≈ −

≈ −
−

≈

x

x

x

x

x

x

x

20 400 19.6
9.8

20 419.6
9.8

20 419.6
9.8

0.484
9.8

0.049

40.484
9.8

4.131

Deva can’t catch the ball before her father throws it, so ignore the negative solution. The ball will 
be 1 meter off the ground approximately 4.131 seconds after Mr. Patel throws it. 

12·7
EXERCISE

1.	 The square of a number is 85 less than 22 times the number. What is the number?

2.	 You have a ladder 20 feet long, and want to lean it against a wall so that the top of the 
ladder reaches a point 17 feet above the floor. How far from the base of the wall should the 
foot of the ladder be? [Round to the nearest tenth.]

3.	 Find three consecutive odd integers such that the square of the first is 3 less than the sum 
of the other two. 

4.	 A triangle has an area of 45 square meters. The height of the triangle is 3 meters more than 
twice its base. How long is the base of the triangle?

5.	 The 86th floor observation deck of the Empire State Building is 320 meters above street 
level. If an object were dropped from the deck, how long would it take to hit the ground? 

6.	 The perimeter of a rectangle is 28 inches. If the diagonal is 10 inches long, find the 
dimensions of the rectangle. 

7.	 Before a football game, the referee tosses a coin upward with an initial velocity of 7 meters 
per second. One team captain must call heads or tails before the coin hits the ground. If the 
referee’s hand is 1.8 meters above the ground when he tosses the coin, how long does 
the team captain have to make a call before the coin hits the ground? [Round to the 
nearest tenth.]

8.	 A rectangle is 3 times as long as it is wide. If the width is increased by 6 feet, and the length 
is decreased by 3 feet, the area is doubled. Find the dimensions of the original rectangle. 

9.	 The sum of two numbers is 5. The sum of the squares of the numbers is 53. Find the numbers. 

10.	� Sanjai walked down the stairs from his apartment to the street and then discovered he had 
forgotten his wallet. His wife came to the window and offered to toss it out so he didn’t have 
to walk back up. She threw it downward with an initial velocity of 5 meters per second from 
a height of 13.7 meters. How long did it take to hit the ground? [Round to the nearest tenth.]
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Calculator notes #7
In Calculator Notes #1, we talked about finding the x-intercepts of graphs. When the graph you’re 
looking at is a parabola, the graph of a quadratic equation, you may find one x-intercept, more 
than one x-intercept or no x-intercepts at all. The process of finding those x-intercepts is the same 
as for a linear equation. You just need to make sure that you place your cursor to the left, and then 
to the right, of the intercept you’re trying to find. Think of it as fencing in the point you want. 
Then move on to another intercept and repeat, fencing in the second intercept point. 

The other task that comes up with parabolas is finding the turning point, called the vertex. 
The vertex is either the lowest point on the graph, if the parabola opens up, or the highest point, 
if the parabola opens down. 

To find the vertex, graph the equation and use the maximum or minimum function on your 
calculator:

•	 Move your cursor to the left of the vertex.

	

•	 Press 2nd  TRACE  and choose 3: minimum if you’re looking for a low point or 4: maximum 
for a high point. 

	

•	 Your cursor should already be left of the vertex, so press ENTER .
•	 Move the cursor past the vertex and press ENTER .

	

•	 If you wish, move your cursor closer to the vertex and press ENTER . 
•	 The coordinates of the vertex are displayed at the bottom of the screen. 
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When a minimum or maximum value sits right on the x-axis, that x-intercept is not only the 
vertex; it’s also a double zero. The quadratic equation represented by this parabola is a square and, 
rather than two different solutions, has the same solution twice. The zero function on your calcu-
lator may not be able to cope with this, because it expects the left and right boundaries to have 
opposite signs, and that doesn’t happen with a double zero. You can try slowly tracing on the 
graph until you see the y-coordinate become zero, but that’s tedious and you may never get exactly 
on zero. Instead, try this:

•	 With your original equation in Y1, also graph Y2 = 0. The graph will not look any differ-
ent, because Y2 = 0 sits right on the x-axis.

•	 Press 2nd  TRACE  and choose 5: intersect. The two curves are Y1, the original equation, and 
Y2, the x-axis, and the intersection will be that point where the original equation touches 
the x-axis. 
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·13·

Mathematics is more than arithmetic, as you certainly have seen. One of the things 
math often does is compare quantities, and those comparisons can be based on differ-
ent operations. The statement that x is 4 more than y is based on adding or subtracting, 
but saying a is 3 times the size of b is based on multiplication or division. A ratio is a 
comparison of two numbers by division. The relationship between 10 and 5 or between 
26 and 13 can be expressed as a ratio: 10 : 5 or 26

13
. Both of these are equal to 2 : 1. 

Using ratios and extended ratios
If two quantities are in the ratio a : b, it’s not assured that they are exactly equal 
to a and b, but they are multiples of a and b. As a result, you can represent them 
as ax and bx and use those expressions to write an equation about the numbers. 
If two numbers add to 50 and are in the ratio 3 : 7, you can represent the num-
bers as 3x and 7x and write 3x + 7x = 50. You’ll find that x = 5, so the actual 
numbers are 3x = 3 ⋅ 5 and 7x = 7 ⋅ 5, or 15 and 35. 

An extended ratio is a comparison of three or more numbers, usually written 
in the form a : b : c. If the measurements of the angles of a triangle are in the ratio 2 
: 3 : 5, you can represent the measures of the angles by 2x, 3x, and 5x and add 2x + 
3x + 5x = 180°. Once you solve and find x = 18°, remember to multiply by the 
appropriate coefficients to find the angle measures: 2x = 36°, 3x = 54°, and 5x = 90°. 

13·1
EXERCISE

Use ratios to solve each problem. 

1.	 Find the number of degrees in each angle of a triangle if the angles are in 
the ratio 3 : 4 : 5.

2.	 A piece of wood 20 ft long needs to be cut into two pieces that are in the 
ratio 2 : 3. How long should each piece be?

3.	 Two numbers are in the ratio 8 : 3 and their difference is 65. Find the 
numbers. 

Proportion and variation

Tools in this chapter:

◆	 Understand proportional relationships
◆	 Find a missing term of a proportion
◆	 Investigate quantities that vary directly or inversely
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4.	 Laura determined that the perfect recipe for her raspberry limeade was to mix raspberry 
juice and lime juice in a 5 : 7 ratio. How much raspberry juice will she need to make 48 oz of 
the mixture?

5.	 Three numbers are in the ratio 3 : 4 : 8. The sum of the two larger numbers exceeds twice 
the smallest by 48. Find the numbers. 

6.	 Two numbers are in the ratio 5 : 6. If 8 is added to each of the numbers, they will be in the 
ratio 7 : 8. Find the numbers. 

7.	 Two numbers are in the ratio 3 : 7. If 1 is added to the smaller number and 7 is added to the 
larger, they will be in the ratio 1 : 3. Find the numbers.

8.	 What should be added to both 9 and 29 to produce numbers that are in the ratio 3 : 4?

9.	 The numerator and denominator of a fraction are in the ratio 2 : 5. If 2 is subtracted from 

both the numerator and denominator, the resulting fraction is equal to 
1
3

. Find the original 
numerator and denominator. 

10.	 The larger of two numbers is 2 more than 3 times the smaller. If 3 is added to the smaller 
number and 1 is added to the larger, they will then be in the ratio 3 : 7. Find the numbers. 

Solving proportions
A proportion is a statement that two ratios are equal, or an equation of the form a

b
c
d

= . Any 

two equal ratios form a proportion. In a proportion like 10 : 5 = 2 : 1, the numbers on the ends,  
10 and 1, are called the extremes, and the numbers in the middle, 5 and 2, are called the means. 

When the ratios are written as fractions, the proportion is 
extreme

mean
=

mean
extreme

. 

In any proportion, the product of the means is equal to the product of the extremes. For 

example, in 10 : 5 = 2 : 1, 10 × 1 = 5 × 2 and in 3
7

12
28

= , 3 × 28 = 7 × 12 = 84. When one term of the 

proportion is unknown, you can cross multiply to create an equation that you can solve for the 
missing term. 

 

3 5
35

5 3 35 105
105

5
21

x
x

x

=

= ⋅ =

= =

 

13·2
EXERCISE

Solve each proportion to find the value of the variable. 

1.	 5
3

7
=

x
 	   3. 

9
15

15
=

x

2.	 w
5

6
2

=  	   4. 
18
2 5

30
.

=
x
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5.	 4
5

3
x x+

=  	   8.  3
4

4
3x

x
−

=
+

6.	 x x−
=

−7
2

2 3
5

 	   9.  5
12

12
5x

x
−

=
+

7.	  
x

x4
16

= 	 10. 
7

3 4x
x

−
=

Variation
Variation looks at how quantities change, specifically in relation to one another. When you 
observe two related variables, does one increase as the other increases? Do they increase at the 
same rate or different rates? How do you describe that relationship? Or does one get larger as 
the other gets smaller? How do you describe that activity with an equation? There are two basic 
variation relationships, direct variation, when both increase (or both decrease), and inverse varia-
tion, when the quantities move in opposite directions. There are more complex relationships, of 
course, but those can be built by combining direct and inverse variation in different ways. 

Direct variation
When two quantities vary directly, they increase or decrease together. If 2 hamburgers cost $3 
and 4 hamburgers cost $6, the total cost of the hamburgers varies directly with the number of 
hamburgers you buy. The number of hamburgers goes up, and the total cost goes up. But the 
number of hamburgers increased by 2 hamburgers, and the total cost increased by $3. There has 
to be a number in the equation that talks about how much things change. If y varies directly as x, 

there is a constant k such that y kx= , or 
y
x

k= . This constant of variation, as it’s called, is the ratio 

of a y-value to its corresponding x-value. In the hamburger example, 
$ $3

2
6

4 burgers  burgers
= , so 

k = 1 5. . You can say total cost = 1.5 × number of burgers.
If you know that two quantities are directly related, you can plug in known values of x and 

y to find k, and once you know k, you can apply the relationship to other values of x or y. For 
example, if y varies directly as x, and y = 12 when x = 2, you can find that k = 6, either by solving 

12 2= ⋅k  or by dividing 
12
2

= k. Once you know that k = 6, if you’re told that x has changed to 5, 

you can determine that y = ⋅ =6 5 30. If you find that y has changed to 42, you can solve 42 6= x  
and see that x = 7.

13·3
EXERCISE

Use the direct variation equation y = kx to find k, and then find the value of the variable 
requested. 

1.	 If y varies directly as x and y = 12 when x = 4, find y when x = 14.

2.	 If y varies directly as x and y = 5 when x = 20, find x when y = 25.

3.	 If t varies directly as r and t = 52 when r = 13, find t when r = 78.
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4.	 If a varies directly as b and a = 17 when b = 51, find b when a = 425.

5.	 If y varies directly as the square of x and y = 28 when x = 2, find y when x = 10.

6.	 The voltage V in an electric circuit varies directly with the current I when I = 40 A, V = 0.06 V. 
Find V when I = 6 A. 

7.	 The distance covered in a fixed time varies directly with the speed of travel. If you can travel 
117 mi at 45 mph, how far will you travel in the same time if you increase your speed to 
55 mph?

8.	 The time that passes between the moment a flash of lightning is seen and the moment a 
clap of thunder is heard varies directly with the observer’s distance from the center of the 
storm. If 10 s elapse between the lightning and the thunder, the storm is 2 mi away. How far 
is the storm if 3 s pass between the flash and the sound of thunder?

9.	 The volume of a gas under a constant pressure varies directly with its temperature. At 18°C, 
a gas has a volume of 152 cm3. What is the volume when the temperature is 36°C?

10.	 If a car uses 7 gal of gas to travel 119 mi at a certain speed, how far can it travel on 10 gal of 
gas if it travels at the same speed?

Inverse variation
Quantities that vary inversely move in opposite directions. When one quantity increases, the 

other decreases. If y varies inversely as x, then there is a constant k such that y
k
x

= , or xy k= . You 

can use known values to find k and then calculate x or y, just as you did for direct variation, if 
you’re given the value of the other variable. If y varies directly with x and y = 9 when x = 2,  

substituting those values into xy k=  tells you that k = 18. If x increases to 6, y = =
18
6

3. 

13·4
EXERCISE

Use the inverse variation equation =y
k
x

 to find k, and then find the value of the variable 
requested. 

1.	 If y varies inversely with x and y = 4 when x = 6, find y when x = 8. 

2.	 If y varies inversely with x and y = 8 when x = 4, find x when y = 2. 

3.	 If y varies inversely with x and y = 24 when x = 3, find y when x = 9. 

4.	 If r varies inversely with t and t = 11 when r = 12, find t when r = 3. 

5.	 If a varies inversely with b and a = 54 when b = 10, find a when b = 45. 

6.	 Given that v varies inversely with t, and v = 32 when t = 4, what is the value of v  
when t = 24?

7.	 If w varies inversely with l and w = 22 when l = 4, what is the value of w when l = 22?
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8.	 If N varies inversely with B and N = 3 when B = 8, find the value of B for which N = 144. 

9.	 If y varies inversely with x and y = 39 when x = 6, find the value of x that produces a y-value 
of 18.

10.	 If a = 18 and b = 16, and a and b vary inversely, what is the value of a when b is 12?

Joint and combined variation
A quantity varies jointly with two or more other quantities if it varies directly with their product; 
that is, y varies jointly with x and z if there is a constant k such that y kxz= . If x is held constant, 
y varies directly with z. If z is held constant, y varies directly with x. 

Combined variation occurs when y varies directly with x and inversely with z. The equation 

for combined variation has the form y
kx
z

= . If you hold x constant, y will vary inversely with z. 
If you hold z constant, y will vary directly with x.

In both joint and combined variation, you can find the value of k just as you did with direct 
and inverse variation. Choose the correct equation, plug in the known values, and solve for k. 
Then, just as before, if one or more variables change, plug in the new values along with k and solve 
for whatever is missing. 

13·5
EXERCISE

Use the appropriate variation equation to find k, and then find the value of the variable 
requested.

1.	 If y varies jointly with x and z, and y = 84 when x = 7 and z = 3, find y when x = 9 and z = 5.

2.	 If y varies jointly with x and z, and y = 165 when x = 6 and z = 11, find x when y = 200 and 
z = 10.

3.	 If y varies jointly with x and z, and y = 3375 when x = 3 and z = 9, find z when x = 12 and 
y = 10,500.

4.	 If y varies directly with x and inversely with z, and y = 9 when x = 270 and z = 12, find y 
when x = 100 and z = 8.

5.	 If y varies directly with x and inversely with z, and y = 53 when x = 3 and z = 12, find x when 
y = 159 and z = 28.

6.	 If y varies directly with x and inversely with z, and y = 4 when x = 8 and z = 14, find z when 
x = 36 and y = 6.

7.	 The volume of a solid varies jointly with the area of its base and its altitude. When the area 
of the base is 12 cm2 and the altitude is 16 cm, the volume is 64 cm3. Find the altitude when 
the volume is 60 cm3 and the area of the base is 9 cm2. 

8.	 The gravitational force between two bodies varies directly with the masses of the bodies 
and inversely with the square of the distance between them. When a 70-kg person stands 
on the surface of the Earth, 6,378 km from the center of the Earth, the force of gravity is 
686 N. Find the force of gravity acting on the same person when the person is in a plane 
40,000 ft (about 12 km) above the surface of the Earth.
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9.	 The volume of a gas varies directly with temperature and inversely with pressure. At a 
temperature of 450°F and a pressure of 40 psi, a gas has a volume of 10 ft3. What is its 
volume if temperature is reduced to 440°F and pressure is raised to 50 psi?

10.	 The electric resistance of a wire varies directly with its length and inversely with the square 

of its diameter. A wire 80 ft long with a diameter of 
1
8

 in has a resistance of 
1
2

 ohm. What  

is the resistance in a piece of the same type of wire that is 120 ft long and has a diameter of 
1
4

 in? 
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·14·

A rational expression is the quotient of two polynomials, and a rational equation 
is an equation containing rational expressions. Because division by 0 is impos-
sible, the denominator of a quotient can never be 0. The domain of a rational 
expression is the set of all values of the variable for which the expression is defined, 
which means the values of the variable that do not make the denominator 0. 

Simplifying rational expressions
The quotient of two polynomials can look very complicated, but just like frac-
tions, rational expressions can often be simplified. When we work with fractions, 
we often talk about reducing the fraction to lowest terms. That wording is a little 
bit of a misrepresentation, however. Reducing is making something smaller, and 
we don’t change the value of the fraction at all. We just change the way it looks. 

To simplify a rational expression, factor the numerator and the denominator 

and cancel any factors that appear in both. The rational expression  4 8 21
8 22 15

2

2

x x
x x

− −
+ +

 

looks like it would be difficult to work with, but if you pause for a minute and 
examine the numerator and denominator separately, you’ll see that both factor. 

4 8 21
8 22 15

2 7 2 3
4 5 2 3

2

2

x x
x x

x x
x x

− −
+ +

= − +
+ +

( )( )
( )( ))

Because both the numerator and the denominator have a factor of 2x + 3, you can 

think of 
( )( )
( )( )
2 7 2 3
4 5 2 3

x x
x x

− +
+ +

as 
2 7
4 5

2 3
2 3

2 7
4 5

1x
x

x
x

x
x

−
+

⋅ +
+

= −
+

⋅ , or simply 
2 7
4 5

x
x

−
+

.  

Rational equations  
and their graphs

Tools in this chapter:

◆	 Recognize when a rational expression is undefined
◆	 Simplify and operate with rational expressions
◆	 Solve rational equations and specify any restrictions
◆	 Graph rational functions

14_Wheater_Ch14_p131-146.indd   131 15/03/22   11:42 AM



	 132	 practice makes perfect  Algebra I

14·1
EXERCISE

Reduce each expression to simplest form. 

1. 
14 6
7 3

x
x

+
+

 	   6. 
2 4 48

2 32

2

2

x x
x
+ −

−

2. 
3 6

9 18
x

x
−
−

	   7. 
x

x x

2

2

4
5 11 2

−
− +

3. 
a

a a

2

2

49
42

−
− −

	   8. 
x

x x

2

2

16
3 4
−

+ −

4.	
2 18

18 81

2

2

y y
y y

−
− +

	   9. 
x x
x x

2

2

8 15
2 3

+ +
+ −

5. 
4 32

2 1282

y
y

+
−

	 10. 
a a

a a

2

2

2
3 10
+

− −

Multiplying rational expressions
The basic rule for multiplying rational expressions is the same as the basic rule for fractions: 
numerator times numerator and denominator times denominator. Just as with fractions, however, 
much time and effort can be saved by canceling, or simplifying, before multiplying. 

To multiply rational expressions:

•	 Factor all numerators and denominators
•	 Cancel any factor that appears in both a numerator and a denominator 
•	 Multiply numerator times numerator and denominator times denominator

Multiplying 
4 2 30
4 5 1

4 35 9
4 36

2

2

2

2

x x
x x

x x
x

− −
− +

⋅ + −
−

 might look like an unreasonable task, but begin by 

focusing on numerators and denominators, one by one, and factoring as completely as possible. 

4 2 30
4 5 1

4 35 9
4 36

2 2 52

2

2

2

x x
x x

x x
x

x x− −
− +

⋅ + −
−

= +( )( −−
− −

⋅ + −
+ −

3
1 4 1

9 4 1
4 3 3

)
( )( )

( )( )
( )( )x x
x x

x x

Once you’ve factored, you can see that there are factors that appear more than once. Cancel them 
out, one from a numerator with one from a denominator.

2 2 5 3
1 4 1

9 4 1
2 4 3

( ) ( )
( ) ( )

( ) ( )
( ) (

x x
x x

x x
x

+ −
− −

⋅
+ −

+ xx − 3)
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What’s left will still require some work to multiply, but it’s much easier than the original problem. 

 
( )
( )

( )
( )

2 5
1

9
2 3

2 23 45
2 4 6

2

2

x
x

x
x

x x
x x

+
−

⋅ +
+

= + +
+ −

 

14·2
EXERCISE

Multiply the rational expressions and give answers in simplest form. 

1. 
6 24
9 27

3 9
2 8

x
x

x
x

−
+

⋅
+
−

	   6. 
x
x x

x x x
x x

2

2 3

3 2

2

4
3

12
2 8

−
+

⋅
− −
− −

2. 
x

x x
x x

x

2

2

225
2

6
5

−
− −

⋅
+ −

−
	   7. 

x x
x

x
x

2 6 5
5

9
1

− +
−

⋅
−
−

3. 
7 7

4
4 12

4 3

2

2 2

x x
x

x
x x

−
⋅

−
− +

 	   8. 
6 12

4 9
4 6
3 4

2

2

x x
x

x
x

− −
−

⋅
+
+

4. 
a a

a
a

a a

2

2

2

2

20
16

3 27
6

+ −
−

⋅
−

+ −
	   9. 

x
x

x
x

2

2

25
8

4
5

−
⋅

−

5.  ( )25
15 3
3 15

2− ⋅
−
+

y
y

y
	 10. 

12
12 18

4 2 3
4 8

2 2x
x

x x
x−

⋅
− −
+

Dividing rational expressions
Take a minute to think about how you divide fractions. In fact, you don’t. You multiply by the 
reciprocal of the divisor. Use the same tactic to divide rational expressions. 

To divide rational expressions, invert the divisor and multiply. Factor all the numerators 
and denominators, and cancel where possible. 

5 20
12

2 8
3 12

5 20
12

3 1
2

2

2

x
x x

x x
x

x
x x

x−
+ −

÷ − −
+

= −
+ −

⋅ + 22
2 8

5 4
4 3

3 4
4 2

2x x
x

x x
x

x x

− −

= −
+ −

⋅ +
− +

( )
( )( )

( )
( )( )

==
−

+ −
⋅

+
− +

= ⋅
−

5 4
4 3

3 4
4 2

5 3
3

( )
( ) ( )

( )
( ) ( )

(

x
x x

x
x x

x ))( )x x x+
=

− −2
15

62
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14·3
EXERCISE

Divide the rational expressions and give the answers in simplest form. 

1. 
81
4 12

9
3

2−
+

÷
−
+

x
x

x
x

 	   6. 
x x

x
x
x

2

2

18 81
25

9
3 15

+ +
−

÷
+
−

2. 
x x
x x

x
2

2

4
2

4
−
+

÷ −( )  	   7. 
x
x

x x
x

−
+

÷
+ −

+
3
2

4 21
3 6

2

3. 
9

16
3

4

2

2

x
x

x
x−

÷
+

 	   8. 
x x

x
x
x

2 2

2

7 12
1

16
1

− +
−

÷
−
−

4. 
x x

x
x x

x

2

2

26
4

2
2

− −
−

÷
− −
−

 	   9. 
x x
x x

x
x

2

2

3 10
4 4

5
2

− −
− +

÷
−
−

5. 
2 3

4
2 6

8 16

2t t t
t

−
÷

+ −
+

 	 10. 
y
y

y y
y

+
−

÷
− +

−
8
8

16 64
64

2

2

Adding and subtracting rational expressions
Adding and subtracting rational expressions calls on the same skills as adding and subtracting 
fractions. If the fractions have different denominators, they must be transformed to have a com-
mon denominator. Once the denominators are the same, you add or subtract the numerators and 
simplify if possible. When you work with rational expressions, because the numerators and 
denominators are polynomials, that process becomes a little more complicated, but a step-by-step 
approach will get the job done. 

If the fractions have different denominators, as in 5
4

3
62 2x x x−

−
+ −

,  

•	 Factor the denominators: 
5

2 2
3

3 2( )( ) ( )( )x x x x+ −
−

+ −
.

•	 Identify any factors common to both denominators, in this case, x − 2.
•	 Form the lowest common denominator (LCD) from the product of each factor that is 

common, used once, and any remaining factors of either denominator, for this problem 
(x − 2)(x + 2)(x + 3).

•	 Transform each fraction by multiplying the numerator and denominator by the same 
quantity (don’t worry about multiplying out the denominator yet).

5
2 2

3
3

3
3 2

2
( )( )

( )
( ) ( )( )

( )
(x x

x
x x x

x
x+ −

⋅ +
+

−
+ −

⋅ +
+ 22

5 15
2 2 3

3 6
2 2

)

     
( )( )( ) ( )(

= +
− + +

− +
− +

x
x x x

x
x x ))( )x + 3

When the fractions have common denominators, add or subtract the numerators. For subtrac-
tion, use parentheses around the second numerator to avoid sign errors.

5 15 3 6
2 2 3

5 15 3 6
2

x x
x x x

x x
x

+ − +
− + +

= + − −
−

( )
( )( )( ) ( )(( )( ) ( )( )( )x x

x
x x x+ +

= +
− + +2 3

2 9
2 2 3
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Finally, factor the numerator if possible, and simplify if possible. Multiply out the denominator at 
the very last, if necessary.

14·4
EXERCISE

Add or subtract as indicated, and give answers in simplest form. 

1. 
x x+

+
−2

3
3

2
 	   9. 

x
x

x
x

+
+

−
−

2
3

3 1
2

2. 
3 4

8
2 4

12
x x−

−
+

 	 10. 
x
x

x
x

+
+

+
+
−

1
5

2
5

3. 
4

1
2

2x x+
+

−
 	 11. 

a
a a a a2 26 9

1
4 21− +

−
+ −

4. 
x

x x−
+

+5
3

2
 	 12. 

5
5 6

2
3

6
22

x
x x x x− +

+
−

−
−

5. 
x

x
x

4 3 4−
−  	 13. 

x
x

x
x

x
x

+
+

+
−
−

+
+
−

3
2

3
2

6
42

6. 
4

4
5

22x x−
+

+
	 14.  x

x
x

x
+

−
+

−
−

4
25

3 1
52

7. 
t

t
t

t

2

2 25
3

3 15−
−

−
	 15. 

2
6

4
5 6

3
92 2 2x x x x x− −

−
+ +

+
−

8. 
5

9
5

32

x
x x−

−
+

	

 

Complex fractions
A complex fraction is one that contains fractions within its numerator or denominator or both. 
There may be one fraction or several fractions in the numerator or denominator or both. 

There are two methods for simplifying complex fractions. The first is to focus your attention 
initially on the numerator and simplify it as completely as possible and then turn to the denomi-
nator and simplify that. The final step in this method is to realize that a fraction is actually a divi-
sion problem, and divide the numerator by the denominator. 

To simplify the complex fraction

1 1
2

2 3
2

x x

y y

−

+
by this method, first do the subtraction in the 

numerator: 
1 1

2
2

2
1

2
1

2x x x x x
− = − = .  Next, turn your attention to the denominator and do that

addition: 
2 3 2 3 2 3

2 2 2 2y y
y

y y
y
y

+ = + = + .  Finally, divide the simplified numerator by the simplified 

denominator. 

1
2

2 3 1
2 2 3 4 62

2 2

x
y
y x

y
y

y
xy x

÷ + = ⋅
+

=
+
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The second method for simplifying complex fractions is often quicker. Find the LCD for all 
the fractions contained in the numerator and denominator, and then multiply both the numerator 

and the denominator by this LCD. For the complex fraction 

1 1
2

2 3
2

x x

y y

−

+
,  the LCD would be 2xy2.

Multiply the complex fraction by 
2
2

2

2

xy
xy

, distribute, and simplify. 

1 1
2

2 3
2
2

2 1 2 1
2

2

2

2

2 2

x x

y y

xy
xy

x y
x

x y
x−

+
⋅ =







−












+













= −

2 2 2 3

2
4

2 2

2

2 2

xy
y

x y
y

y y
xyy x

y
xy x+

=
+6 4 6

2

14·5
EXERCISE

Simplify each complex fraction. 

1. 

x
y

y
x

x
y

y
x

+

−
 	   6. 

1
1

1
1

x

x

−

+

2. 

1 1

1
x y

xy

+
 	   7. 

x
x

x
x

− −

+ +

2
15

6
9

3. 

6
3

2
1

16

+

−

x

x
x

 	   8. 
x

x

x
x

− +
+

+ +
−

4
3

4

4
3

4

4. 

x
x y

x
x y

+

−
+

1
 	   9. 

16

8 10
32

y
y

y y

−

+ −

5. 

1

1
1

−
−

+

x
x y

y

 	 10. 
6

5 2
1

2
1

1

2+ +
−

+
−

x
x

x
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Solving rational equations
There are two methods for solving rational equations. One uses a property of proportions 
commonly called cross-multiplying, and the other depends on multiplying through to clear 
fractions. 

Cross multiplying
In the cross-multiplication method, you simplify the equation until it is two equal fractions, and 
then you cross multiply. Cross multiplying gives you an equation that you can solve to find the 
value of the variable. This method works best when the equation is relatively simple. If you use 
cross multiplying on rational equations with higher-degree polynomials or just a lot of polynomi-
als in the numerators and denominators, you can end up with an equation that’s really difficult 
to solve and probably extraneous solutions.

•	 First, concentrate on the left side of the equation. Perform all indicated operations until 
the left side is a single fraction. 

−
+

+ =

−
+

+ +
+

=

−
+

=

+
−

+
−

20
4

3

20
4

3 12
4

3 8
4

5
1

2

5
1

2

5

x

x
x
x
x

x

x

x

x ++
−

1
2

•	 Next, concentrate on the right side of the equation. Perform all indicated operations until 
the right side is a single fraction. 

3 8
4

3 8
4

3 8
4

5
1

2

5
1

2 2
1

x
x
x

x
x

x

x

x
x
x

−
+
−
+
−
+

=
+

−

=
+

− +
+

= −22 3
1

x
x

+
+

•	 Cross multiply and solve the resulting equation.

3 8
4

2 3
1

3 8 1 4 2 3
3 2

x
x

x
x

x x x x
x

−
+

= − +
+

− + = + − +( )( ) ( )( )
−− − = − − +

− =
=
=
= ±

5 8 2 5 12
5 20 0

5 20
4

2

2

2

2

2

x x x
x

x
x
x
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Always check your solutions in the original equation. Extraneous solutions are not unusual, 
especially because any values that would make one of the denominators equal to 0 are not in the 
domain of the equation and therefore can’t be solutions. 

The term cross multiplying is an old label for a shortcut on the steps you commonly use to 
solve equations: performing the same operation on both sides of the equation. After a lot of work 
with ratios and proportions, people noticed a pattern. Originally, formally, it was called the 

means-extremes property. If you have a proportion, two equal ratios, like =a
b

c
d

, then ad = bc. For 

example, if =8
9

24
27

, then 8 · 27 = 9 · 24. You could check by multiplying, but it might be easier to 

think about it this way: 8 · 27 = 8 · 3 · 9 = 24 · 9. This property gave us a quick way to solve for a miss-

ing number in a proportion. If =x
7

20
28

, then = ⋅ =x28 7 20 140 and = = ⋅
⋅

=x 140
28

14 10
14 2

5.

This is not magic or some new piece of algebra. It’s just a shortcut for the steps you’d take in 
solving an equation: you see x is divided by 7, so multiply both sides by 7, and you get







= 



 = =x7

7
7 20

28
140
28

5

When we have a rational equation that can be simplified to one rational expression on each 
side—two equal fractions—we can borrow the shortcut. Let’s do an example without the 
shortcut. 

You need to solve the equation below, and you can’t do that with variables in the denomina-
tor, so multiply both sides of the equation by the first denominator. 

( ) ( )

( )

−
+

=
+

+ −
+







= +
+







− = +
+

x x

x
x

x
x

x
x

5
3

5
2

3 5
3

3 5
2

5 5 3
2

That eliminated one denominator, but you still have another one. You’ll have to multiply both 
sides by x + 2.

( )( ) ( ) ( )

( ) ( )

+ − = + +
+







− + = +

x x x
x

x x

2 5 2 5 3
2

5 2 5 3

Can you see that your equation is now at the point that you would have reached if you had used 
the shortcut called cross multiplying? When your rational equation is two equal rational expres-
sions, you can choose whether you’d like to use the shortcut or just clear denominators by multi-
plying both sides by each denominator. For more complicated equations, you’ll want to use the 
method in the next section. 

14_Wheater_Ch14_p131-146.indd   138 15/03/22   11:43 AM



	 Rational equations and their graphs 	 139

14·6
EXERCISE

Solve each of the rational equations by cross multiplying. 

1. 
8

3
2

x
=  	   6. 

5 15
2

5
4x x

+ =

2. 
4 6

2
x

x
−

=  	   7. 
2

1
3

1x x−
=

+

3. 
x x
2 3

4− = 	   8. 
1 1

22x x x
=

−

4. 
a

a −
=

5
8
3

	   9. 
7 3

4
5
2

3
4

t t−
= −

−

5. 
1 1

3
28

x x
+ =  	 10. 

3
2 8

1
4

1
2x x−

+
−

=

Multiplying through by the LCD
The second method for solving rational equations involves clearing, or eliminating, the fractions 
as quickly as possible. In this method, you multiply every term in the equation by a common 

denominator to eliminate all the fractions. In the rational equation 
1 3 7
x x

+ = , multiplying each 

term by x will give you 1 + 3x = 7, a simple equation to solve. Of course, many equations will be 
more complicated, so proceed step by step. 

•	 Factor each of the denominators.

x
x x x x

x
x x

x
x x x x

+
+

+
+ +

= +
+

+
+

+
+

1
2

3
3 2

4

1
2

3
1

2 2 2

( ) ( )( ++
= +

+2
4
1) ( )

x
x x  

•	 Determine the LCD of all the algebraic fractions in the equation. The LCD of x(x + 2), 
(x + 1)(x + 2), and x(x + 1) is x(x + 2)(x + 1). 

•	 Multiply both sides of the equation by the LCD, distributing as necessary. 

x x x x
x x

x x x
x

( )( )
( )

( )( )
(

+ + +
+









 + + +

+
2 1 1

2
2 1 3

1))( )
( )( )

( )x
x x x x

x x+








 = + + +

+








2

2 1 4
1

•	 Cancel as you multiply, and all denominators should disappear. 

x x x x
x x

x x x
x

( ) ( )
( )

( ) ( )
(

+ + +
+













+ + +2 1 1
2

2 1 3
++ +













= + + +
+









1 2
2 1 4

1) ( )
( ) ( )

( )x
x x x x

x x 



+ + + ⋅ = + +( )( ) ( )( )x x x x x1 1 3 2 4
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•	 Solve the resulting equation, and check your solution. 

( )( ) ( )( )x x x x x
x x x x x
+ + + ⋅ = + +

+ + + = + +
1 1 3 2 4

2 1 3 6 82 2

55 1 6 8
7

x x
x

+ = +
− =

	 Check: 

x
x x x x

x
x x

+
+

+
+ +

= +
+

− +
+ −

+
+ −

1
2

3
3 2

4

7 1
49 14

3
49 21

2 2 2

++
= − +

+ −
− + = −

− + = −

2
7 4

49 7
6

35
3

30
3

42
36

210
21

210
15

2110

14·7
EXERCISE

Solve each rational equation by multiplying through by the LCD. 

1. 
2 3

1
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2x x

+
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−
+
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2. 
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−
+
+

=
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17
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5
8x x−

+
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3
5

3
2
3x x−

+
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1

5
5

3 15
8

252x x x−
−

+
=

−

4. 
x
x x

−
+

+
−

=
3
1

1
1

1 	   9. 
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5
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8
7

13 402x x x x+
−

+
=
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5. 
6

3
15

2 6
3
2

x
x x−

−
−

=  	 10. 
5

6
7 3

3 17 6
3

3 12x
x

x x x+
−

−
+ −

=
−

 

Graphing rational functions
The graphs of rational functions are often discontinuous—that is, the graph is in two or more 
pieces—because the function is undefined for any value that makes the denominator equal to 0. 
Simple rational functions have a characteristic two-wing shape called a hyperbola, as shown in 
Figure 14.1, but more complicated rational functions have various graphs. You’ll want to make a 
table of values; there are a few tips that can help you choose useful x-values. 

Vertical asymptotes
An asymptote is a line that is not part of the graph but one that the graph approaches closely. 
When the graph gets close to the vertical asymptote, it curves either upward or downward very 
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Figure 14.1  The graph of a simple rational function.

steeply so that it looks almost vertical itself. Remember that the graph can get very close to the 
asymptote but can’t touch it. 

Vertical asymptotes occur at many of the values of x for which the function is undefined, so 
before you begin to build a table of values, find the value(s) of x that would make the denominator 
equal to 0. These will be discontinuities, or breaks, in the graph, and you can expect that as you 
get near these x-values, the y-values will become very large (positive) or very small (negative). 

Choose x-values on both sides of the vertical asymptotes. The function y
x

=
+
3

1
 has a vertical 

asymptote of x = −1 and y x
x

= +
−

2 3
2

 has a vertical asymptote of x = 2, as shown in Figure 14.2. 

Figure 14.2  Graphs of =
+

= +
−

3
1

and
2 3

2
.y

x
y

x
x

Vertical asymptote
x = –1

Horizontal asymptote
y = 0

Horizontal asymptote
y = 2

Vertical asymptote
x = 2

y = 
2x + 3
x – 2y = 

3
x + 1
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Horizontal asymptotes
Horizontal asymptotes, like vertical asymptotes, are not actually part of the graph, but they are 
lines that the left and right ends of the graph approach closely. The graphs of simple rationals 
often flatten out on the ends, so these asymptotes are often horizontal lines. 

If the degree of the numerator is less than the degree of the denominator, as in y
x

=
+
3

1
, the

horizontal asymptote will be y = 0. If the degrees of the numerator and denominator are the same, 

as in y x
x

= +
−

2 3
2

, divide the lead coefficients to find the horizontal asymptote. The horizontal

asymptote for y x
x

= +
−

2 3
2

 is y = 2.

Drawing the vertical and horizontal asymptotes as dotted lines before you begin graphing 
will help you locate the graph. 

14·8
EXERCISE

Graph each rational function. Sketch the vertical and horizontal asymptotes first. 

1.  y
x

=
1

 	   6.  y
x

=
−
+
3
4

2.  y
x

=
−
1

2
 	   7.  y

x
x

=
−

−
3 5

2

3.  y
x

=
+
1

3
 	   8.  y

x
x

=
− +

+
( )3

5

4.  y
x

=
2

 	   9.  y
x

x
=

−2 1

5.  y
x

=
−1

 	 10.  y
x
x

=
−
+

8 1
4 6

Problems solved with rational equations
Rational equations always present a challenge, if only because they can become large and un-
wieldy. Remember that multiplying through the equation by the simplest common denominator 
for all rational expressions will clear all the denominators. That may leave a linear equation or a 
quadratic equation, but solving always seems easier when the denominators are gone. 

Extraneous solutions are common in rational equations. Whether you find yourself with 
one solution or two, remember to check each solution in the original equation. Don’t rely on the 
version after you clear denominators because you could have had an earlier error. 

The types of problems that most often lead to rational equations are problems about shared 
work and inverse variation problems. 

Work problems
Problems that deal with how long it takes two people (or two machines) to do a job while working 
together can be organized much the same way as all the mixture problems you saw earlier if you 
know one little trick. As soon as you are told how long it takes someone to do the job, express the 
part of the job that person can do in one unit of time—one minute, one hour, one day, whatever. 
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Suppose that George can do a job in two hours and Harry can do it in three hours. How long 
will it take them to do it working together? You want to set up a table similar to the ones for mix-
ture problems. 

Part of the job 
done in 1 hour

Number  
of hours Whole job

George 1
2

2 1

Harry
1
3

3 1

Together
1
x

x 1

The part of the job done in 1 hour times the number of hours will always equal one. Your equation 
comes not from adding the hours but from adding the part of the job done in an hour. 

1
2

1
3

1

6 1
2

1
3

1 6

3 2 6
5 6

6
5

11
5

+ =

+





= 





+ =
=

= =

x

x
x

x

x x
x

x

It will take 11
5

 hours or 1 hour and 12 minutes for them to do the job together. 

Inverse variation problems
Like direct variation problems, inverse variation problems are not very different from the basic 
statement of the problem. Instead of y and x, you’ll find the names of the quantities that vary 
inversely. Unlike direct variation, inverse variation problems will have variables in the denomi-
nator of a rational expression, so the solution will require solving simple rational equations. 

At a fixed temperature, the volume of a certain quantity of gas varies inversely with the pres-
sure. If the volume is 16 in3 when the pressure is 18 psi, find the pressure that produces a volume 
of 20 in3.

Let V = the volume in cubic inches
Let P = the pressure in psi (pounds per square inch)

Write the general form of the inverse variation equation.  
Substitute known values to find the constant of variation.

V k
P
k

k

=

=

=

16
18
288
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Write the specific equation for this situation. Substitute and solve. 

V
P

P
P
P

=

=

=
=

288

20 288

20 288
14 4.

A pressure of 14.4 psi will produce a volume of 20 in3.

14·9
EXERCISE

1.	 Two machines in the school office can print final exams. The larger machine can print all the 
necessary exams in 12 hours, but the smaller one would need 36 hours to do the same job. 
How long will it take to print all the necessary exams if both machines were used?

2.	 Elena can complete a quilt in six months, but if she and her mother work on it together, they can 
complete it in two months. How long would it take Elena’s mom to complete the quilt by herself?

3.	 Every year Mr. Song has to produce an annual report that fills many, many pages. If he types it 
himself, it takes him a week. If he gives it to his administrative assistant to type, she can do it 
in three days. How long will it take to get the annual report typed if both of them work on it?

4.	 If the drain pipe in the pool is opened, the pool will drain in eight hours. If, in addition to 
opening the drain, a pump is set up to pump water out, the pool will be emptied in 5 hours. 
How long would it take the pump, working alone, to empty the pool?

5.	 Alicia takes six hours longer than David to complete a project. Working together, they can 
complete the project in 7.2 hours. How long would it take Alicia to complete the project alone?

6.	 It takes Ron twice as long to mow his lawn with a push mower as it takes him to mow it 
with a power mower. He starts working with the power mower, but after 45 minutes, he 
runs out of gas and has to finish the job with the push mower. It takes him an additional 
45 minutes to finish the job with the push mower. How long would it have taken Ron to 
mow the entire lawn with the power mower?

7.	 For a fixed area, the length and width of a rectangle are inversely related. When the length 
is 12 cm, the width is 9 cm. Find the width when the length is 27 cm. 

8.	 The time required to drive a fixed distance varies inversely with speed. If a trip takes 
6.5 hours at 55 mph, how long will it take if driven at 65 mph?

9.	 The force of gravity on an object varies inversely with its distance from the center of the 
Earth. The radius of the Earth is 6378 km. The International Space Station orbits 
approximately 350 km above the Earth, and the force of gravity acting on it is approximately 
2.7 × 1012 Newtons. What would the force of gravity be if the International Space Station 
were 500 km above the surface of the Earth?

10.	� The illumination on a surface varies inversely with the square of its distance from a light 
source. At a distance of 5 ft from the light source, the illumination is 270 foot-candles. At 
what distance from the same light source will the illumination be 750 foot-candles?
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Calculator notes #8
The quadratic formula is a critical tool for solving quadratic equations and should be memorized, 
but evaluating it often demands the use of a calculator. Sometimes you’ll want to leave the expres-
sion in simplest radical form, and calculators are not always able to do that, but when the decimal 
approximation is acceptable, there are a few ways your calculator can help. 

With a formula like x b b ac
a

= − ± −2 4
2

, typing in the calculation over and over with the 

different values for each equation can be tedious and prone to errors. Instead, try this:

•	 Type the value of a; press STO  ALPHA  A. Repeat to put the value of b into STO  ALPHA  B and 
the value of c into STO  ALPHA  C.

	

•	 Using ALPHA  A, ALPHA  B, and ALPHA  C, type − + −( ) ( )B B AC A2 4 2/  and press ENTER . 
One solution will be displayed. 

	

•	 Cursor up and press ENTER , or press 2nd  ENTER , to bring back − + −( ) ( )B B AC A2 4 2/ . 
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•	 Cursor left and change the + to − to get − − −( ) ( )B B AC A2 4 2/  and press ENTER . The 
second solution will be displayed. 

	

•	 For other problems, store new values for a, b, and c; then recall − + −( ) ( )B B AC A2 4 2/  
using 2nd  ENTER  to get one solution, recall again, and change + to − to get the second  
solution. Repeat as needed.

If you’re comfortable doing a little programming, you can create a quadratic formula pro-
gram on your graphing calculator. It would need to contain a section to ask for the values of a, b, 
and c, a section to calculate each solution, and a section to display the results. 

To create a new program, press PRGM , cursor to NEW, and press ENTER . You’ll be asked for a 
name for the program, and you can use up to eight characters. If you look at the blinking cursor, 
you’ll see that it’s already in ALPHA  mode, and you can type the name using the keys with the 
appropriate letters above. When you press ENTER , the program will be created, and you’ll see a 
basically blank page. Each new line will start with a colon generated automatically. 

The common commands are in menus that you can access by pressing PRGM  again. The first 
menu, CTRL, contains commands for creating loops and directing the flow of the program. The 
middle menu is commands about input and output, receiving information to use in the program 
and displaying values, messages, graphs, and tables. The final menu, EXEC, allows your program 
to call other programs stored on your calculator. 

When your program is complete, press 2nd  MODE  to quit the editing process. The program 
will be saved automatically. If you need to stop working before you’re done, just quit. When you 
come back, press PRGM  and cursor to EDIT. When your program is ready to test or use, press 

PRGM , choose its name from the list and press ENTER . 
The best way to get a quadratic formula program for your calculator is to write it yourself. If 

that doesn’t work for you, there are many versions available on the internet and even some in 
textbooks. If you decide to copy one of those, take the time as you enter it to try to understand the 
logic. Afterward, you may want to try creating one of your own. 
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·15·

An exponent is shorthand for expressing repeated multiplication, a convenient 
way to condense certain mathematical statements. Large expressions can often be 
simplified quickly, when written in exponential form, by using the basic rules for 
exponents. Exponents not only help in arithmetic, but they also play an important 
role in algebra.

When an unknown number is multiplied repeatedly, you get a power of a 
variable, x5, and those powers, with their coefficients, can combine into polyno-
mials. In those polynomials, the variable is the base of the power, the number 
being multiplied. In a polynomial, you have a variable as the base and an integer 
as the exponent. 

When a constant is used as the base and a variable is the exponent, as in 5x, 
you have a different kind of expression. Putting the variable in the exponent posi-
tion, on a constant base, creates an exponential expression or defines an exponen-
tial function. In such a function, the base of the power doesn’t change. What 
changes is the number of times it is multiplied. Let’s compare a simple polynomial 
function, f x x( ) = 3, to an exponential function, g x x( ) = 3 . 

x 0 1 2 3 4
f(x) 0 03 =  1 13 =  2 83 =  3 273 = 4 643 =  

As x increases, the value of x3 grows, but by a different amount at each step. 
From x = 1 to x = 2, there’s an increase of 7 in the function value, but from x = 2 to 
x = 3, there’s a jump of 19. Trying to compare successive values by multiplying 
doesn’t help either because there’s no consistent ratio, 64

27
27
8

8
1

≠ ≠ , and of course, 
you can’t divide 1 by 0. 

x 0 1 2 3 4
g(x) 3 10 =  3 31 =  3 92 =  3 273 = 3 814 =  

The exponential function, in contrast, has a constant ratio of 3. Each term is 
a power of the base, 3, so each value is 3 times the one before it. The pattern of 

Exponential growth 
and decay

Tools in this chapter:

◆	 Understand exponential growth and decay
◆	 Calculate the results of exponential growth or decay
◆	 Graph exponential functions
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an exponential function is also different from a linear pattern. The table below shows some 
values for y = 3x. 

x 0 1 2 3 4
y 3 × 0 = 0 3 × 1 = 3 3 × 2 = 6 3 × 3 = 9 3 × 4 = 12

In this function, there is no constant ratio, but there is a constant difference. For each increase of 
1 unit in x, y increases by 3, the slope of the linear equation. In a linear equation, you see a constant 
difference between successive terms, equal to the slope. In a power equation, like y x= 3, you see neither 
a constant difference nor a constant ratio, but in an exponential equation, there is a constant ratio of 
successive terms. You can use those differences to help distinguish among the types of equations. 

The three equations we looked at (y x= 3 , y x= 3, and y x= 3 ) are simple examples of their types, 
and each type has its own standard form. Exponential functions have a standard form of y abx= , 
where a and b are constants and b is greater than zero. If we allowed the base b to be negative, and if 
x were to take a value like 1

2
 that represents a root, we might find ourselves trying to take the square 

root of a negative number. There is no such real number, so requiring b > 0 eliminates the problem. 
The value of a is a multiplier, often representing a beginning value b0 1=  for any nonzero 

value of b, but 1 may not always be where you want to start. Multiplying by a lets you change that. 
However, that extra multiplier can make it harder to recognize an exponential relationship. Let’s 
compare two functions called y1 and y2.

x 0 1 2 3 4
y1 1 2 4 8 16
y2 3 6 12 24 48

It’s easy to recognize the values of y1 as an exponential function. They’re simply powers of 
two, so the equation is y x

1 2= . The function y2 is not as easy to identify. Start by looking at ratios 
6
3

12
6

24
12

48
24

2= = = = . The ratio of successive terms is always 2, which says that this is an exponen-

tial function and the base of the power is 2. Now take y abx= , replace b with 2, and then plug in 
any corresponding x and y from the table. You’ll be able to solve for a. The easiest ordered pair to 
choose would be (0, 3), but any pair will do, so let’s use (3, 24); 24 23= ( )a  becomes 24 = 8a, and 
dividing by 8 gives you a = 3. The equation is y x

2 3 2= ( ). 

15·1
EXERCISE

Each of the tables below shows values of either a linear function y mx b= +( ), a power 
function y ax n=( ), or an exponential function y ab x=( ). Identify which type of function 
is represented in each table. 

1.	 x 1 2 3 4 5
y 10 100 1,000 10,000 100,000

	   4.  x 3 4 5 6 7

y 5
8

5
16

5
32

5
64

5
128

2.	 x 1 2 3 4 5
y 10 14 18 22 26

	
  5.  x 6 7 8 9 10

y 11 24 39 56 75
3.	 x 3 4 5 6 7

y 18 32 50 72 98
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Each of the tables below represents an exponential function y ab x=( ). Identify the values of a and b.

6.	 x 0 1 2 3 4
y 2 6 18 54 162

	   9.  x 1 2 3 4 5

y − 2
3

− 2
9

− 2
27

− 2
81

− 2
243

7.	 x 0 1 2 3 4
y 3 6 12 24 48

	

10.  x 2 3 4 5 6
y 200 2,000 20,000 200,000 2,000,000

8.	 x 1 2 3 4 5
y 1.5 4.5 13.5 40.5 121.5

 

Evaluating exponential functions
Exponential functions grow quickly, even when the base is small, and the base is not restricted to 
positive integers, so fractions or decimals could be used as bases as long as they’re positive. For these 
reasons, a calculator is handy when you’re evaluating exponential expressions and functions. 

Calculate carefully when you have a multiplier, and watch the placement of parentheses, 
especially on a calculator. Remember that the order of operations says exponents before multipli-
cation, so raise b—and only b—to the xth power, and then multiply by a. For the exponential 

function = 



f x( ) 6 1

2

x

, the value of = 



 = 



 =f (4) 6 1

2
6 1

16
3
8

4

. If you mistakenly multiply 6 times 
1
2

 first, you’ll end up with 3 814 = , a very different (and incorrect) result. 

Given the y-value for an exponential function, it’s more challenging to find the value of x. 
Many exponential equations require knowledge beyond the scope of an Algebra I course, but 
some can be solved with skills you have if the numbers are friendly. 

If you’re asked to solve 5 25x = , you likely just recognized that 5 252 = , so x must be 2. To 
solve − ( ) = −7 3 189x , first divide both sides by −7, to get 3 27x = . Then previous experience (or a 
little trial and error) will tell you that 3 273 = , so x = 3. But you can also see that 2 17x =  doesn’t 
yield to this method. It will surrender when you study logarithms. 

15·2
EXERCISE

For questions 1 – 6, find the value of y for the given value of x.

1.	 y x= ( )2 3  and x = 4	 4.	 y x= ( )0 25 6.  and x = 2

2.	 ( )=y
1
2

4 x  and x = 2	 5.	 y x= ( )3 10  and x = 6

3.	 y x= − ( )1 5  and x = 3	 6.	 y x= − ( )2 0 1.  and x = 2

For questions 7 – 10, solve each equation. 

7.	 2 5 50x( ) =  	 9.	 7 2 56x( ) =

8.	 − ( ) = −4 3 36x 	 10.	 ( ) =1
2

10 5,000x
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Compound interest
When you invest a sum of money, you expect that you’ll get your money back plus an additional 
amount, called interest. If you borrow money, you expect to repay the loan plus interest. The 
amount originally invested or borrowed is the principal, and the amount of interest earned or 
paid is determined by finding a percentage of the principal.

The interest paid on a loan or an investment can be calculated either as simple or compound 
interest. Simple interest is a one-time calculation: the amount loaned or invested times the inter-
est rate per year times the number of years, or I = Prt. Compound interest is calculated at regular 
intervals—annually, semiannually, quarterly, monthly, or daily—and the interest for that period 
is added to the principal and then earns interest along with the principal. If you invest $1000 at 
5% per year for 2 years, simple interest would be I = 1000 × 0.05 × 2 = $100, for a total of $1100. If 
you invest the same $1000 at 5% per year for 2 years compounded annually, interest would be 
calculated at the end of the first year: I = 1000 × 0.05 × 1 = $50, and that $50 would be added to the 
original $1000. The interest for the second year would be calculated on $1050: I = 1050 × 0.05 × 1 = 
$52.50. After 2 years, you will have earned $102.50, for a total of $1102.50. 

After the first year, you had your original $1000 plus 5%, or 105%, of your original invest-
ment. After 2 years, you had 105% of 105% of your original investment, or $1000(1.05)2. When 
interest is compounded annually, the total value of the investment is A P r t= +( ) ,1  where P is the 
principal or original investment, r is the rate of interest per year (converted to a decimal), and t 
is the number of years. 

If the interest is compounded more than once a year, you don’t get the whole year’s worth of 
interest at every interval. Instead, the annual rate is divided by the number of times per year the 
calculation is done. While this might look like it would reduce the interest, remember that inter-
est will be compounded more frequently, and each time it is compounded, the amount of money 
earning interest grows. 

For compound interest, use the formula A P r
n

nt

= +



1 ,  where P is the principal or original 

investment, r is the rate of interest per year (converted to a decimal), n is the number of times per 
year interest is compounded, and t is the number of years.

15·3
EXERCISE

Calculate the value of each investment after the specified time when invested as described. 

1.	 An investment of $5000, at 3% per year, compounded annually, for 2 years

2.	 An investment of $10,000, at 8% per year, compounded semiannually, for 5 years

3.	 An investment of $2000, at 4% per year, compounded quarterly, for 10 years

4.	 An investment of $2500, at 5% per year, compounded monthly, for 4 years

5.	 An investment of $100,000, at 10% per year, compounded quarterly, for 12 years

6.	 An investment of $4000, at 5.5% per year, compounded monthly, for 8 years

7.	 An investment of $7500, at 2.5% per year, compounded semiannually, for 5 years
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8.	 An investment of $3000, at 9% per year, compounded annually, for 8 years

9.	 An investment of $15,000, at 12% per year, compounded quarterly, for 6 years

10.	 An investment of $25,000, at 6% per year, compounded annually, for 15 years

Exponential growth and decay
Compound interest is a common example of exponential growth. The principal amount grows 

over time because it’s multiplied by powers of 1+ r  or 1+ r
n

. When the base of a power is greater 
than 1, the power will grow as the exponent increases, so equations of the form  y abx=  represent 
exponential growth when b is greater than 1. 

In contrast, when b is less than 1 but greater than 0, the equation represents exponential 
decay, a decreasing quantity. If the number of his classmates’ names George remembers decreases 
2% per week over summer vacation, after 1 week he’ll know 98% (or 1 − 0.02) of what he knew the 
week before. After 3 weeks, he’ll know 98% of 98% of 98%, or (1 − 0.02)3. When the rate of increase 
or decrease is given, it may be helpful to rewrite the equation as y a r x= +( )1  for increase and 
y a r x= −( )1  for decrease. 

15·4
EXERCISE

Tell whether each equation represents exponential growth or exponential decay. 

1.  y x= +400 1 0 03( . ) 	 4.  y
x

= 



950

7
3

2.  y x= −30 000 1 0 01, ( . ) 	 5.  y x= 2 05 0 6. ( . )

3.  y
x

= 



42

3
5

	

Identify each situation as growth or decay, and evaluate the result. 

6.	 A colony of bacteria is created with 200 bacteria, and the population doubles every hour. 
Find the population 1 day (24 h) later. 

7.	 A patient is given an injection of 250 mg of a drug. Each hour, as the body metabolizes the 
drug, the level in the bloodstream is reduced by 20%. What is the level in the bloodstream 
4 h later? 

8.	 A city had a population of 250,000 in 2008, and the population was increasing by 11% per 
year. What would the population be in 2012? 

9.	 A new car is purchased for $24,000. The car depreciates (loses value) at 12% per year. How 
much is the car worth 3 years later? 

10.	 A county had 45,000 acres of forested land in 1996, but that acreage was decreasing at 
5% per year. How many acres of forested land remained in the county in 2000?
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Graphing exponential functions
Graphs of exponential functions have a characteristic shape, almost flat on one end and very 
steep on the other. The flat end approaches a horizontal asymptote, a horizontal line that the 
graph comes very close to but doesn’t touch. The graph of an exponential growth rises sharply 
on the right and approaches a horizontal asymptote on the left. Exponential decay graphs are 
reflected, reversed left to right, so they’re falling steeply from left to right and flattening out on the 
right end (see Figure 15.1). 

Figure 15.1  Exponential growth and decay.

Exponential
decay

Exponential
growth

Plotting a few key points can help you shape the graph of an exponential equation. Always 
look for the y-intercept. If y = abx, when x = 0, b0 = 1, so the y-intercept will be a. Plugging in 1 

and −1 for x will give you two more points that will easily set the shape: ( , )1 ab  and −






1, .a
b  The 

graph of y x= 3 2( )  has a y-intercept of (0, 3) and passes through the points (1, 6) and −






1 3
2

, , as 
shown in Figure 15.2.

Figure 15.2  Graph of exponential growth.

y-intercept
(0, 3)

(1, 6)

(–1, 1.5)
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15·5
EXERCISE

Graph each exponential function by making a table of values and plotting points. 

1.  y x= 2 1 5( . ) 	   6.  y x= −1 3( )

2.  y x= 4 75(. ) 	   7.  y
x

=






−3
1
2

1

3.  y x= 2 	   8.  y x= − +2 1 5 4( . )

4.  y
x

= 





1
3

	   9.  y x= +5 9 2(. )

5.  y x= 3 2( ) 	 10.  y x= −10 1 1 3( . )

Calculator notes #9
In first-year algebra, your tools for solving exponential equations are limited. You can solve an 
exponential equation if it’s possible to express both sides of the equation as powers of the same 
base, but if that’s not the case, the best you can do is to take a guess. If you tried to solve the equa-
tion 5 2 3 163x( ) + = , you could subtract 3 and divide by 5 and get to 2 32x = . Because 32 is a power 
of 2, you can express that as 2 25x =  and conclude that x = 5. In contrast, if the original equation 
were 5 2 3 165x( ) + = , the solution would look like this:

5 2 3 165

5 2 162

2 32 4

x

x

x

( ) + =

( ) =

= .

No integer power of 2 is equal to 32.4, so you can only say x is a little more than 5. 
With your graphing calculator, however, you can use the intersect feature to get a better 

estimate.

•	 Graph Y x1 2=  and Y2 32 4= . . Adjust the window so that you can see where the graphs 
intersect. 

 

•	 Press 2nd  TRACE . Choose 5: intersect.
•	 Press ENTER  to mark the first curve.
•	 Press ENTER  to mark the second curve.

15_Wheater_Ch15_p147-154.indd   153 15/03/22   11:47 AM



	 154	 practice makes perfect  Algebra I

•	 Move your cursor near the point of intersection if you wish, and press ENTER .

•	 The solution is displayed at the bottom of the screen. 
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·16·Matrix algebra

The word matrix is used in many contexts with different meanings. In math-
ematics, a matrix is a rectangular arrangement of numbers. Numbers are 
often organized into matrices because they represent similar pieces of infor-
mation or because the same calculation must be performed on all of them. On 
the coordinate plane shown in Figure 16.1, the triangle has vertices at the 
points (1, 2), (−1, −1), and (2, −1). The x-coordinates are on the top row, and the 
y-coordinates on the bottom. Each column represents a point. It can be repre-
sented by the matrix 

1 1 2
2 1 1

−
− −











Figure 16.1  The vertices of a triangle can 
be organized in a matrix.

Tools in this chapter:

◆	 Understanding matrices 
◆	 The arithmetic of matrices 
◆	 Matrices in geometry 
◆	 Solving systems with matrices
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Rows and columns
The matrix as a whole can be named by a single capital letter, and the individual numbers within 

the matrix are called elements. We can say A =
















4 7 2
9 8 4
1 0 9

 or M =
−











1 0
5 1

.  Every matrix is 

organized into rows, which are horizontal lines of elements, and columns, which are vertical stacks 

of numbers. The matrix 
2 8 3 6 1
8 4 2 6 5









  has two rows, each containing five elements. The 

matrix 
3 7
6 9
2 5

















 has three rows, each containing two elements. The matrix 
2 8 3 6 1
8 4 2 6 5









  has 

five columns of two elements, and the matrix 
3
6
2

7
9
2

















 has two columns of three elements.

The dimension, or order, of a matrix is a description of its size, giving first the number of 

rows and then the number of columns. The matrix 
2 8 3 6 1
8 4 2 6 5









  is a 2 × 5 matrix, meaning 

that it has two rows and five columns. Because the matrix 
3 7
6 9
2 5

















 has three rows and two col-

umns, we say its dimension is 3 × 2. Matrix A =
















4 7 2
9 8 4
1 0 9

 has three rows and three columns, so 

it has dimension, or order, 3 × 3. Because the number of rows and columns are the same in matrix 

A, we say that matrix A is square. Matrix M =
−











1 0
5 1

 is also a square matrix, and its dimension 
is 2 × 2.

A matrix with only one row is called a row matrix, and a matrix with only one column is 
called a column matrix. Row matrices and column matrices are sometimes referred to as vectors.

Figure 16.2  Matrices can be written 
in different formats.

2 8 3

2

6 1

8

1 0
5 –1

4

3 7

4 7 2
9 8 4
1 0 96 9

2 5

6 5

Matrices are generally enclosed in square brackets, although sometimes other enclosures are used. 
Any rectangular arrangement may be considered a matrix, even if it is not enclosed (see Figure 16.2). 
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16·1
EXERCISE

Give the dimension of each matrix.

1.	 9 7 3 9
5 3 2 0









 	 4.	 4

6











2.	 1 0 2 9[ ] 	 5.	
1 0 0
0 1 0
0 0 1

















3.	
−
− −

















1 9
6 4

7 0

6.	 A small sporting goods shop keeps records of the types of purchases made by its customers. 
These records are organized into categories of equipment, clothing, accessories, and books, 
and then each category is divided by sport. Organize the records from a typical day, below, 
into a matrix. 

		  Equipment: 24 tennis, 15 golf, 2 volleyball, 7 softball, 3 basketball

		  Clothing: 5 tennis, 2 golf, 1 basketball, 2 softball

		  Accessories: 3 golf, 1 volleyball, 5 softball

		  Books: 2 tennis, 12 golf, 1 basketball

Addition and subtraction
The sporting goods store mentioned in the last exercise would certainly want to combine the 
information gathered on one day with information from other days to see total sales for a week, 
a month, a quarter, or a year. This could be accomplished by adding the individual numbers, but 
entering the information into matrices, as you did in the exercise, can simplify the process. With 
the aid of calculators or computers, the computation is streamlined, becoming one operation 
rather than many, but even if the work must be done manually, the matrix structure clarifies the 
task and helps to prevent errors. 

Matrices to be added or subtracted must be of the same dimensions. Only matrices with 
identical dimensions can be added or subtracted. If the sizes of the matrices are not the same, the 
addition or subtraction cannot be performed. 

Logically, it is also important to consider what the matrices represent. It would make little 
sense to add a matrix showing sales of sporting goods to a matrix containing calorie counts. 
What could the total possibly represent? Even if the differences between the matrices are not so 
dramatic, care must be taken to ensure that the calculation is sensible. 

If two matrices have the same dimension, they can be added by simply adding the corre-
sponding elements. If the matrices did not have the same dimension, some elements would not 
have partners, and it would be impossible to complete the addition properly. 
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To add the matrix 
8 6 2 9
7 1 5 0









  to the matrix 

9 3 7 2
0 4 1 8









,  we create a new matrix of the 

same dimension and fill it with the sums of the corresponding elements. 

8 6 2 9
7 1 5 0

9 3 7 2
0 4 1 8

8 9 6 3 2 7 9 2
7









 +









 =

+ + + +
++ + + +









 =









0 1 4 5 1 0 8

17 9 9 11
7 5 6 8

The process of subtracting matrices is similar to that of adding matrices. Matrices must be 
of the same dimension, and corresponding elements are subtracted. To subtract the matrix 

8 6 2 9
7 1 5 0

9 3 7 2
0 4 1 8

















from the matrix


, form a new matrix of the same dimension and fill 

it with the differences of the corresponding elements. 

8 6 2 9
7 1 5 0

9 3 7 2
0 4 1 8

8 9 6 3 2 7 9 2
7









 −









 =

− − − −
−− − − −









 =

− −
− −









0 1 4 5 1 0 8

1 3 5 7
7 3 4 8

Just as in standard arithmetic, order is significant in subtraction. You know that 7 − 3 ≠ 3 − 7. The 

first equals 4, while the second gives −4. Similarly, the result of 
8 6 2 9
7 1 5 0

9 3 7 2
0 4 1 8









 −









  is 

not the same as 
9 3 7 2
0 4 1 8

8 6 2 9
7 1 5 0









 −









 .

Changing the order of subtraction changed the sign of each element in the final matrix. 
When you learned to subtract integers, you probably were taught to “add the opposite” or to 

“change the sign and add.” These rules told you, for example, that 7 3 7 3− − = + +( ) ( ).When sub-
tracting matrices, you can apply a similar rule. 

If A =
−

−

















1 3
5 0
2 5

 and B =
−

−
−

















4 3
2
4

1
5

,  then the problem can be expressed as 
−

−

















+
1 3

5
2

0
5

 

−
−
−

















4 3
2
4

1
5

.  Each element of the second matrix has been changed to its opposite, and you add 

instead of subtracting. Only the second matrix, the one following the minus sign, is changed. 
When matrix addition or subtraction is used in applications, it is important to be certain 

that the matrices are organized in ways that ensure that the operation is sensible. Attempting to 
add the matrix

Tennis Golf Volleyball Softball Basketball
Equippment 23 15 2 7 3
Clothing 5 2 0 2 1
Accessories 0 3 1 5 0
Boooks 2 12 0 0 1
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to the matrix

Tennis Golf Volleyball Softball Basketball
Accesssories
Books 5 0 7 3 8
Clothing 18 0 28 8 3
Equ

16 7 8 11 3

iipment 4 6 0 0 1

would produce numbers with little meaning because the categories appear in different orders in 
each matrix. One of the matrices should first be reorganized so that corresponding elements rep-
resent like quantities. 

16·2
EXERCISE

Add, if possible. 

1.	
5 3
2 7

1 8
5 3









 +











2.	
2
4

1
2

9
6

1
5

4
3

6
9

−
−









 +

−
−











3.	 [ ] [ ]9 8 3 6 2 6 0 1 2 5 3 0 4 3+ − −

4.	
2 4 5 2 7
4 8 4 3 2
9 7 5 7 0

3 2 5 7
4 8 0 4
3 5 8 4

















+
− −

















	   5. 

1
5
1
2

3
5
1
3



















+



















Subtract, if possible.

6.	 7 24 6 83 4 81 9 33
5 39 7 48 3 82 7 29

6 23 2 71. . . .
. . . .

. .







 − 11 77 7 21

1 03 3 28 0 28 7 01
. .

. . . .











7.	
16 8 9
7 14 6
3 23 15

8 3 5
2 11 3
0 15 7

















−
















	   9. 
2 8
9 6

0 3

8 3
7 4
1 9

−
−

















−
−

−

















8.	 [         ]3 8 6
2
0
1

−
















	 10. 

3
4
5
6

1
4
1
6



















−


















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Scalar multiplication
In matrix arithmetic there are two types of multiplication, scalar multiplication and matrix mul-
tiplication. As the name suggests, the latter involves the multiplication of a matrix by a matrix, 
and we will consider that in the next section. Scalar multiplication, in contrast, is the multiplica-
tion of a single number times a matrix. The single number is called a scalar. 

In the scalar multiplication 3 1 7 2
0 5 1

−
−









 ,  multiplying the 2 × 3 matrix by the scalar 3 has 

the effect of adding three copies of the matrix. 

3
1 7 2
0 5 1

1 7 2
0 5 1

1 7 2
0 5 1

−
−









 =

−
−









 +

−
−









 +

−
−











1 7 2
0 5 1

Because scalar multiplication represents repeated addition, we can easily anticipate the end result 
of the process. 

3
1 7 2
0 5 1

1 7 2
0 5 1

1 7 2
0 5 1

−
−









 =

−
−









 +

−
−









 +

−
−









 =

−
−











1 7 2
0 5 1

3 21 6
0 15 3

Focusing on the beginning and end of this process allows us to find the common shortcut for 
scalar multiplication.

3 1 7 2
0 5 1

3 21 6
0 15 3

3 1 3 7 3 2
3

−
−









 = −

−








 =

⋅ ⋅ ⋅ −
⋅

( )
00 3 5 3 1⋅ ⋅ −











( )

To multiply a matrix by a scalar, multiply each element of the matrix by the scalar. 
The rule for scalar multiplication may remind you of the process you learned as the distribu-

tive law. While the scalar certainly seems to be distributed over the matrix, there is a significant 
difference between the two ideas. The distributive property distributes multiplication over addi-
tion (or subtraction), assuring us that c a b ca cb( ) .+ = +  In scalar multiplication, the elements of 
the matrix are not added to one another, either before or after the multiplication. 

When scalar multiplication is combined with addition and subtraction, the familiar order of 
operations will apply. First perform any scalar multiplication, and then add or subtract from left to 
right. As always, matrices must have the same dimension if addition or subtraction is to be 
performed. 

2 4 1
3 6

3 5 2
2 1

8 2
6 12

15 6
6 3

7 4
0 15

−







 + −

−








 = −







 + −

−








 = −









Applications to coordinate geometry
The name scalar multiplication comes from the fact that the single number multiplying the 
matrix represents a scale factor, an indication of a proportional change in the size. This root 
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meaning of the term is simplest to see when we consider a figure in a coordinate plane repre-
sented by a matrix of its coordinates, as shown in Figure 16.3.

Figure 16.3  The vertices of the triangle 
can be represented in a matrix.

(1, 2)

(2, –1)(–1, –1)

If the triangle shown on the grid at the left is represented by the matrix 
1 1 2
2 1 1

−
− −









  and 

we multiply that matrix by a scalar factor of 2, we produce a new matrix. 

2
1 1 2
2 1 1

2 2 4
4 2 2

−
− −









 =

−
− −











If we graph the points represented by this new matrix, we find that they form the vertices of  
a triangle similar to the original, but with sides twice as long. Each vertex of the image triangle  
is twice as far from the origin as the corresponding vertex of the original triangle, as shown in 
Figure 16.4. 

Figure 16.4  The new triangle is twice the size.

(–2, 4)

(2, 4)

(–2, –2)
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16·3
EXERCISE

Multiply.

1.	 5 3 5
7 1
−

−








 	 4.	 − −

−

















1 2
4 0 5
3 2

0 5
.

.

2.	 − −4 1 25 3 75 2 5 4[ . . . ] 	 5.	 2 50

16
18
21
8

.



















3.	 1
2

42 36 78
94 14 17









Perform the indicated operations, if possible. 

6.	 3
1 3 4
5 2 6
2 1 3

2
2 6 3
4 5 1
0 6 3

















+
















7.	 −
















+ − −
















2
3 2
5 1
0 3

7
2 5
1 2

3 0

8.	 5 1 5
2 4

2 1 7 4
2 3 1









 +











9.	 −
















+
−

−

















3
1
2
0

3
2

0
2

10.	 2
1 0 5 3 5
4 2 6 3 1

5
1 0 5 3 5
4 2 6 3 1

3
1 0 5 3 5
4 2 6 3 1









 −









 +











Graph the points represented by matrix A. Then perform the indicated scalar multiplication and graph the 
points represented by the answer matrix.

11.	 A = −









4 1 3
1 5 0

 multiplied by 2

12.	 A = −
− −











3 0 1
1 2 2

 multiplied by 3
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13.	 A = −









4 2 4
2 8 0

 multiplied by 1
2

14.	 The four classes in a high school compete in a fundraising event in which they sell T-shirts 
for $12.99 each. Seniors sold 172 shirts, juniors 88, sophomores 106, and freshmen 42. 
Organize the sales numbers into a matrix, and use scalar multiplication to find the amount 
of money raised by each class. 

Matrix multiplication
When a matrix is multiplied by a scalar, every element of the matrix is multiplied by that same 
value. While this is useful in some situations, many times the necessary calculations are more 
complicated. 

In the last exercise of the previous section, you created a small matrix and multiplied it by 
the scalar $12.99. Imagine, however, that the classes sold both T-shirts and sweatshirts. For each 
class, you would need to record both the number of T-shirts sold and the number of sweatshirts 
sold. This increases the size of your matrix but also introduces another problem. It is unlikely  
that the T-shirts and the sweatshirts would sell for the same price. Sweatshirts would probably 
cost more, perhaps $15.99. Now you have a situation in which some elements of the matrix need 
to be multiplied by $12.99, while others must be multiplied by $15.99. The solution is matrix 
multiplication. 

Two matrices can be multiplied only if the number of elements in each row of the first 

matrix is equal to the number of elements in each column of the second. If A =
−











1 3 2
2 0 4

and 

B =
−

−
−

















1 0 3 2
2 1 4 3
5 0 3 1

, we can multiply A B⋅ because there are three elements of each row of A and 

three elements of each column of B. In other words, the number of columns in the first matrix 
must be equal to the number of rows in the second. Matrix A has two rows and three columns, 
and matrix B has three rows and four columns. 

If we write the dimensions of matrix A and then the dimensions of matrix B, we can see a 
simple way to tell if the multiplication is possible (see Figure 16.5). 

Figure 16.5  If dimensions 
match, the multiplication 
is possible.

dim(A)
2 × 3 3 × 4

dim(B)

If the dimensions do not match, the multiplication cannot be performed (see Figure 16.6). 
The need for matching dimensions makes the order of multiplication important. While we have 
seen that it is possible to multiply A B⋅ , it is not possible to perform the multiplication B A⋅ .
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Figure 16.6  These numbers 
do not match, so the 
multiplication is not possible.

dim(B)
3 × 4 2 × 3

dim(A)

Looking at the dimensions can give us another piece of useful information as well. The 
remaining numbers tell us the dimension of the product matrix that will result. When we 
multiply A B⋅ , looking at dim(A) 2 × 3 and dim(B) 3 × 4 tells us not only that the multiplication 
is possible but also that the product matrix will have dimension 2 × 4, as shown in Figure 16.7.

Figure 16.7  These numbers 
tell the dimension of the 
product matrix.

dim(A)
2 × 3 3 × 4

dim(B)

Multiplying a single row by a single column
To understand the process of matrix multiplication, we will focus first on a row matrix times a 
column matrix. Form a row matrix with the prices of the T-shirts and the sweatshirts in our ear-

lier example, [12.99 15.99] and a column matrix with the total sales by the senior class, 172
95









 .  

The element 172 represents the number of T-shirts sold by the senior class, and the element 95 is 
the number of sweatshirts they sold. 

In order to find the total amount that the senior class raised, we need to multiply 
$12.99 times 172 and multiply $15.99 times 95 and add the results together. The first element in the 
row is multiplied by the first element in the column, and then the second element in the row is 
multiplied by the second element in the column. These products are added to form the single ele-
ment in the product matrix. The result of multiplying a 1 × 2 row matrix times a 2 × 1 column 
matrix is a 1 × 1 matrix. 

[ . . ] [ . . ] [12 99 15 99 172
95

12 99 172 15 99 95⋅








 = ⋅ + ⋅ = 22234 28 1519 05 3753 33. . ] [ . ]+ =

If there are more elements in the row and the column—remember that the number of elements in 
the row must match the number of elements in the column—then there are additional products, 
but all are combined to produce a single element in the product matrix. 

[ ] [ ( ) ( ) ( ) (3 2 5 1

2
1
4
3

3 2 2 1 5 4 1 3⋅

−

−



















= − + + + − ))] [ ] [ ]= − + + + − =6 2 20 3 13
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Multiplying a single row by a larger matrix
In our row-times-column example, we found the total amount of money raised by the senior 
class. We could repeat the exercise for each of the classes, but it would be simpler if we could mul-
tiply the row matrix containing prices [ . . ]12 99 15 99  by the 2 × 4 matrix containing the numbers 
of T-shirts and sweatshirts sold by each class. Multiplying this 1 × 2 matrix by a 2 × 4 matrix 
should produce a 1 × 4 matrix, which logically would contain the fundraising totals for each of 
the four classes. 

To multiply a row matrix by a matrix with more than one column, multiply the row matrix 
times the first column of the larger matrix to produce the first element of the product matrix. 
Repeat the multiplication using the row and each successive column to fill the matrix. 

[ . . ]

[ .

12 99 15 99 172 88 106 42
95 61 75 12

12 99 17

⋅










= × 22 15 99 95
3753 33 12 99 88 15 99 61
3

+ ×
= × + ×
=

. ? ? ?]
[ . . . ? ?]
[ 7753 33 2118 51 12 99 106 15 99 75
3753 33 2118

. . . . ?]
[ .

× + ×
= .. . . . ]

[ . .
51 2576 19 12 99 42 15 99 12

3753 33 2118 51 25
× + ×

= 776 19 737 46. . ]

The multiplication tells us that the senior class raised $3763.33, the junior class $2118.51, the soph-
omore class $2576.19, and the freshman class $737.46. 

Multiplying matrices
The process of multiplying two larger matrices repeats these same steps, with each row of the first 
matrix producing a row of the product matrix. To multiply two matrices, begin by multiplying 
the first row of the first matrix by each column of the second matrix, placing the results in the first 
row of the product matrix. Repeat the process using each row of the first matrix, and place the 
results in the corresponding row of the product matrix. 

As an example, we will multiply the 4 × 2 matrix

1 3
2 4
5 1
2 3

−
− −



















by the 2 × 3 matrix −
−











2 1 0
3 1 4

.

A look at the dimensions of the matrices tells us that the multiplication is possible and that the 
product matrix will be 4 × 3 (see Figure 16.8).

Figure 16.8  Use dimensions to anticipate 
the product. 

Outside numbers tell us the product is 4 × 3.

Match says multiplication is possible. 

4 × 2 2 × 3
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1 3
2 4
5 1
2 3

2 1 0
3 1 4−

− −



















⋅ −
−









 =

? ? ?
? ? ?
? ? ??
? ? ?



















Focus on the first row.

1 3
2 4
5 1
2 3

2 1 0
3 1 4

1 2 3

−
− −



















⋅ −
−









 =

× − +( ) ×× × + × − × + ×

















=

−3 1 1 3 1 1 0 3 4 7 2 12( )

? ? ?
? ? ?
? ? ?

?? ? ?
? ? ?
? ? ?



















Repeat for the second row.

1 3
2 4
5 1
2 3

2 1 0
3 1 4

7 2 12
2

−
− −



















⋅
−

−








 =

−
× (−− + × × + × − × + ×



















=

−
2 4 3 2 1 4 1 2 0 4 4

7 2
) ( )

? ? ?
? ? ?

112
8 2 16−



















? ? ?
? ? ?

Then the third row.

1 3
2 4
5 1
2 3

2 1 0
3 1 4

7 2 12
8 2

−
− −



















⋅
−

−








 =

−
− 116

5 2 1 3 5 1 1 1 5 0 1 4× − + − × × + − × − × + − ×












( ) ( ) ( ) ( )

? ? ? 






=

−
−

− −



















7 2 12
8 2 16
13 6 4
? ? ?

And finally for the bottom row.

1 3
2 4
5 1
2 3

2 1 0
3 1 4

7 2 12
8 2

−
− −

−
−



















⋅








 =

−
− 116

13 6 4
2 2 3 3 2 1 3 1 2 0 3

− −
− × − + − × − × + − × − − × + − ×( ) ( ) ( ) ( ) ( ) 44

7 2 12
8 2 16
13 6 4
5 1 12



















=

















−
−

− −
− −




The identity matrix

If you multiply  1 0
0 1

2 7
9 6


















 ,  you may note an interesting result. The product is identical to the 

second matrix. 1 0
0 1

2 7
9 6

2 7
9 6


















 =









 . If you explore a little, you’ll find that anytime you 
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multiply by a square matrix with 1s on the diagonal and 0s everywhere else, it leaves the other 
matrix unchanged. It’s the matrix equivalent of multiplying a number by 1. A square matrix with 
1s on the main diagonal and 0s elsewhere is called an identity matrix. 

Identity matrices come in various sizes, but they’re always square. To multiply the matrix
8 4 9 2
6 1 3 5









 by an identity on the left, you’ll need a 2 × 2 identity. 

1 0
0 1

8 4 9 2
6 1 3 5

8 4 9 2
6 1 3 5



















 =











To multiply the same matrix 
8 4 9 2
6 1 3 5









  by an identity on the right, you’ll need a 4 × 4 

identity. 

8 4 9 2
6 1 3 5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





























=
88 4 9 2
6 1 3 5











16·4
EXERCISE

For problems 1 through 13, use the matrices A =










2 5
7 3

, B =










5 2 6
1 0 9

, C =
















1 0
5 2
7 6

, 

D = −[ ],1 7 3  and E =
















2
9
6

.  

Determine whether each multiplication is possible. If it is possible, give the dimension of the product matrix.

1.	 A × B	 8.	 D × B

2.	 B × A	 9.	 B × E

3.	 A × C	 10.	 E × B

4.	 C × A	 11.	 D × E

5.	 B × C	 12.	 E × D

6.	 C × B	 13.	 A × D

7.	 B × D
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Multiply, if possible.

14.	 [ ]1 3
4
2









 	 17.	[ ]5 2 1

7 4
2 6

9 1
− −

















15.	 [ ]3 2 1
2
6
1

−
















	 18.	 1 3
4 2

1 0 5
3 2 1−









 −











16.	 [ ]1 2 4 5 4 7
3 5 8











Determinants
The determinant of a matrix is a single number associated with the matrix. Although that is a 
rather uninformative definition, it is difficult to give a better one. In spite of this difficulty, deter-
minants are important in our study of matrix algebra. 

Only square matrices have determinants, and in the simplest case, the determinant of a 1 × 1 
matrix is the single element of the matrix. The determinant of a matrix A is indicated as |A|. The 
bars that indicate the determinant may remind you of the symbols for absolute value, but the 
significance is quite different. We can use the bars around the entire array rather than the name. 

The determinant of the matrix 
4 8
3 1









  is denoted by 4 8

3 1
.

Finding the determinant of a 2 × 2 matrix
In a square matrix, the diagonal path from upper left to lower right is called the major diagonal. 

The diagonal from upper right to lower left is the minor diagonal. In the matrix 
4 8
3 1









 , the  

major diagonal contains the elements 4 and 1, while the minor diagonal contains 8 and 3. 
The determinant of a 2 × 2 matrix is equal to the product of the elements on the major 

diagonal minus the product of the elements on the minor diagonal. The determinant 
4 8
3 1

4 1 8 3 4 24 20= × − × = − = − . If we write this in symbolic terms, we can say 
a b
c d ad bc= − . 

The determinant of the square matrix M =
−

−










2 3
1 4

 can be found quickly by applying the rule 

| |M =
−

−
2 3

1 4
= − × − − × = − =( ) ( ) .2 4 3 1 8 3 5  There are several methods for finding the deter

minants of larger matrices, but considering how tedious the calculations can become, using a 
calculator or computer is the most popular.
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16·5
EXERCISE

Find each determinant, if possible.

1.	 6 5
2 1

	 5.	 3 2 5 2

2.	 −
−

3 7
4 2

	 6.	 1 0
0 1

3.	 1 5 3
8 2 4

	 7.	 7

4.	 4 7
5 9−

	 8.	 5 3
10 6

Find the missing element.

9.	
? 5
1 4

7= 	 11.	
4 3

5
20

?
=

10.	
9
5 3

2
?

=

Inverses
You may have noticed in our discussion of matrix arithmetic that no mention was made of divi-
sion. While there is no operation of matrix division, the arithmetic of matrices does include the 
concept of a multiplicative inverse. The idea of the inverse is familiar from standard arithmetic, 
even if that term is not used as commonly. 

In arithmetic, you learned that every nonzero number has a reciprocal and that the product of 

the number and its reciprocal is 1. The reciprocal of 3
5

, for example, is 5
3

, and the product 3
5

5
3

1⋅ = . 

What we commonly refer to as the reciprocal is formally called the multiplicative inverse. Two 
numbers are multiplicative inverses if their product is 1, the identity element for multiplication. 

To transfer the concept of multiplicative inverse to matrix arithmetic, we need to establish a 
few requirements. In an earlier exercise we saw that the identity element for matrix multiplication 
is a square matrix composed of 1s on the major diagonal and 0s elsewhere. 

1 0
0 1

3 6 1 8 2
4 7 0 2 1

3 6 1 8 2
4 7 0 2









 ⋅

−
− −









 =

−
− −11











In order for two matrices to be called inverses, their product must be such an identity matrix. We 
know, too, that matrix multiplication is not generally commutative, so we add the condition that to 
be called inverses the two matrices must produce the same identity when multiplied in either order. 
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This requires that the two matrices both be square. If they were not square, then the product  
A × B would be of a different size than the product B × A, even if both are identities. 

1 2 3
0 0 1

1 1
0 1
0 1

1 0
0 1

1 1
0 1
0 1









 ⋅

−
−



























−
−















=




⋅
−









 =

−

















1 2 3
0 0 1

1 2 4
0 0 1
0 0 1

If A and B are square matrices and I is an identity matrix of the same dimension, and if 
A B B A I× = × = , then A and B are inverse matrices. We denote the inverse of matrix M as M −1.

When considering whether the inverse of a particular matrix exists, it is wise to first calcu-
late the determinant of the matrix in question. Because only square matrices have determinants, 
this serves as a reminder that only square matrices can have inverses. Not all square matrices 
actually do have inverses, however, and for reasons we will see in a few moments, matrices that 
have determinants of 0 have no inverse. We say that such a matrix is not invertible. 

Verifying inverses
To determine whether two matrices are inverses, we must check both possible products. To deter-

mine if A =










4 3
3 2

 and B =
−

−










2 3
3 4

 are inverses, we check both the products A B×  and 

B A× .

A B× =








 ⋅

−
−









 =

− + −
− + −






4 3
3 2

2 3
3 4

8 9 12 12
6 6 9 8




 =











1 0
0 1

B A× =
−

−








 ⋅









 =

− + − +
− −






2 3
3 4

4 3
3 2

8 9 6 6
12 12 9 8




 =











1 0
0 1

Finding the inverse of a 2 × 2 matrix
Given two matrices, verifying whether they are inverses is a simple matter of multiplication. Most 
often, however, we have only one matrix and need to find its inverse if one exists. Finding the 
inverse of a 2 × 2 matrix is a relatively simple process, but for larger matrices, the process becomes 
more complex. 

To find the inverse of a 2 × 2 matrix, 

•	 Find the determinant of the matrix.
•	 Exchange the elements on the major diagonal.
•	 Change the signs of the elements on the minor diagonal.
•	 Multiply by the reciprocal of the determinant.
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To find the inverse of the matrix 
1 4
0 2









 , we first find the determinant of the matrix. 

1 4
0 2

2 0 2= − =

Remember that matrices with determinants of 0 have no inverse. Next, the elements on the major 
diagonal, 1 and 2, exchange places, and the signs of the elements on the minor diagonal are 
changed. Of course, because 0 is neither positive nor negative, it remains 0. 

1 4
0 2









   becomes  2 4

0 1
−







 .

Finally, we perform a scalar multiplication, multiplying by the reciprocal of the determinant, 
1
2

.   

In cases where the determinant is 0, it is impossible to find a reciprocal, and the process is 

stopped. 

⋅
−







 =

















1
2

2 4
0 1

1 2

0 1
2

The inverse of the matrix 
1 4
0 2









 is the matrix 

1 2

0
1
2

.

16·6
EXERCISE

Determine whether the given matrices are inverses. 

1.	 1 3
2 5









  and −

−










5 3
2 1

2.	 1 3
2 5−









  and 5 3

2 1
−









3.	 4 5
9 7









  and 

1
4

1
5

1
9

1
7


















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Tell whether each matrix has an inverse. Do not find the inverse matrix. 

4.	 5 3
2 1−









 	 7.  5 2

10 4











  5.	
4 2
7 1
3 2−

















	 8.  1 9
3 2











  6.	 9 1
5 2









 	

Find the inverse of each matrix, if possible. 

  9.	 5 3
2 1−









 	   10.  9 1

5 2











Solving systems with matrices
Solving a system of equations—two or more equations in two or more variables—is a common 
task in algebra. In order to arrive at a solution, you need to have as many equations as variables. 
There are several methods of solving a system of equations that make use of matrix algebra.

Cramer’s rule
Cramer’s rule is a method for determining the solution of a system of equations by means of 
determinants. You probably remember from algebra the elimination method of solving a system 
of equations. One or both equations can be multiplied by a constant and then the equations 

added to eliminate one of the variables. Solving the system 
2 3 19
3 4 3

x y
x y

+ =
− =





 will allow us to look at 

the options available. If we choose to eliminate x from the equations, the first equation can be 

multiplied by 3 and the second equation multiplied by −2. Adding the equations eliminates x.

6 9 57
6 8 6

17 51
51
17

3

0

x y
x y

y

y

x

+ =
− + = −

=

= =

+

If instead we choose to eliminate y, the first equation is multiplied by 4 and the second by 3.
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Then the equations are added. 
8 12 76

9 12 9

17 85
85
17

5

0

x y

x y

x

x

y

+ =

− =

=

= =

+

To understand the origins of Cramer’s rule, we want to focus for a moment on two lines, one 

from each of the solutions above: x = =
85
17

5  and y = =
51
17

3.  The denominator of 17, common to 

both, is equal to 2 4 3 3⋅ + ⋅ ,  the opposite of the determinant of the matrix of the coefficients of x 

and y: 
2 3
3 4

2 4 3 3 8 9 17
−

= − − = − − = −( ) ( ) .  The 85 can be produced from a determinant involving 

the coefficients of the y-terms and the constants and the 51 from the coefficients of the x-terms 
and the constants. Cramer’s rule recognizes this and uses determinants to arrive at the solution 
of the system quickly and easily. 

The denominator
To use Cramer’s rule to solve a system, we first find the determinant of the matrix of coeffi-
cients, placing the x coefficients in the first column and the y coefficients in the second: 
2 3
3 4

2 4 3 3 8 9 17
−

= −( ) − ( ) = − − = − .  This determinant will be our denominator for both x and y. 

A numerator for each variable
Next we create a determinant for each variable. The numerator for x is the determinant formed 

when we take the coefficient matrix 
2 3
3 4−

 and replace the values in the x column with the 
constants. 

19 3
3 4

19 4 3 3 76 9 85
−

= − − = − − = −( ) ( )

The numerator for y is the determinant formed when we take the coefficient matrix 
2 3
3 4−

 and 
replace the values in the y column with the constants. 

2 19
3 3

2 3 3 19 6 57 51= − = − = −( ) ( )

Notice that both of these have come out opposite in sign to the values we saw in the algebraic 
solutions. In a moment, when we divide, these sign differences will cancel one another. 

Solutions
To find the values of x and y, all that remains is to divide and simplify. The value of x is the 

x  numerator over the denominator: x =
−
−

=
85
17

5.  The value of y is the y numerator over the  

denominator: y = −
−

=51
17

3.
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16·7
EXERCISE

Solve each system by Cramer’s rule.

1.	 − + = −
− =

3 2 20
5 3 33

x y
x y

	 3.	
2 3 2 9

4 3 3
x y

x y
+ =
− = −

.
.

2.	
2 7 1
3 5 17

x y
x y

− =
+ =

	

Method of inverses
We have already seen that Cramer’s rule allows us to solve systems of equations by means of the 
determinants of matrices formed from the coefficients of the system. With the addition of 
inverses to the matrix tool kit, we can expand our understanding of matrix algebra to access an 
additional method. 

From your experience solving systems, you no doubt recognize that there is no difference in 

the solution of the system 
3 2 13

3 8
x y
x y

− =
+ =





 and the system 
3 2 13

3 8
a b
a b

− =
+ =





. You know that the 

particular letters used as variables are less significant than the coefficients and constants that 
define the system. All the matrix methods of solving systems depend on matrices made from 
these coefficients and constants, but unlike Cramer’s rule, these methods do not replace the coef-
ficients with the constants. 

Matrices of coefficients and of constants

If we use the system 
3 2 13

3 8
x y
x y

− =
+ =





 from our earlier discussion as our example, we can form two 

matrices. The first is a 2 × 2 matrix containing the coefficients of x in the first column and the 
coefficients of y in the second column. Each equation forms a row of the matrix, so the matrix of 

coefficients is 
3 2
1 3

−







.  The second matrix, a column matrix with dimension 2 × 1, contains the 

constants from the other side of each equation. The matrix of constants thus formed is 
13
8









.

The key to this method lies in the fact that the system can be represented by a single state-
ment of matrix multiplication. If the coefficient matrix is multiplied by a column matrix contain-
ing our variables, the result is exactly the left side of our system. 

3 2
1 3

3 2
3

−







⋅









=

−
+











x
y

x y
x y

Because this is the case, our system of equations is equivalent to the matrix equation 

3 2
1 3

13
8

−







⋅









=











x
y
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The algebra of matrices allows us to multiply both sides of this equation by the same matrix, just 
as standard algebra allows us to multiply both sides of an equation by the same number. If then 
we choose to multiply both sides of this equation by the inverse of the coefficient matrix, we find 
ourselves with a rapid solution. 

3 2
1 3

3 2
1 3

1

1 0
0 1

−







 ⋅ −









−











� ��������� ����������
⋅












= −







 ⋅











−
x
y

3 2
1 3

13
8

1 0
0 1

1






















= −







 ⋅

















−x
y

x
y

3 2
1 3

13
8

1







= −







 ⋅











−
3 2
1 3

13
8

1

The solution of the system of equations is equal to the inverse of the coefficient matrix times the 
constant matrix.

In our 2 × 2 example, 
x
y









=

−







 ⋅











−3 2
1 3

13
8

1

. Because 
3 2
1 3

1
11

3 2
1 3

3
11

2
11

1
11

3
11

1−







 =

−








=

−


−

















, we 

can find our solution by multiplying.

x
y









=

−



















⋅









3
11

2
11

1
11

3
11

13
8 =

+

− +



















=

39
11

16
11

13
11

24
11

55
11
11
11



















=










5
1

Thus we know that x = 5 and y = 1.
Although we have used a system of two equations in two variables as our example, the logic 

of matrix algebra holds for systems of any size. Because calculators allow us to find inverses and 
to multiply matrices easily, the technique gives us an easy way to solve systems of any size.

16·8
EXERCISE

Use inverse matrices to solve each system.

1.	 − + = −
− =

3 2 20
5 3 33

x y
x y

	 4.	
2 7 13

5 2
x y
x y

+ =
− = −

2.	
2 7 1
3 5 17

x y
x y

− =
+ =

	 5.	
3 5 36

2 11
x y

x y
− =
+ =

3.	
2 3 2 9

4 3 3
x y

x y
+ =
− = −

.
.

	 6.	 5 2 21
3 4 23

x y
x y

+ = −
− = −
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Calculator notes #10
Not every algebra course includes a look at matrices; in fact, the algebra of matrices can be a 
course in its own right. If you are familiar with matrices, however, they can provide a powerful 
way to solve systems of linear equations, especially with the help of your graphing calculator. 

To enter a matrix into your calculator:

•	 Press 2nd  x−1  to access the MATRIX menu.
•	 Cursor to EDIT and press ENTER .
•	 Choose a slot for your matrix and press ENTER .

•	 Enter the dimensions of your matrix: number of rows, ENTER , number of columns, ENTER .  
The display will adjust to that size. 

•	 Enter your matrix, moving across the row, pressing ENTER  after each number. 
•	 When you have entered the whole matrix, press 2nd  MODE  to QUIT.

To perform addition, subtraction, or multiplication with matrices you have entered:

•	 Press 2nd  x−1  to access the MATRIX menu.
•	 Choose a matrix and press ENTER .
•	 Press the operation sign.
•	 Press 2nd  x−1  to access the MATRIX menu.
•	 Choose the second matrix and press ENTER .
•	 Press ENTER  again to display the result. 
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The algebra of matrices explains, among other things, how to solve a matrix equation by 
matrix operations. If A is a square matrix of coefficients, X is a column matrix of variables, and B 
is a column matrix of constants, the matrix equation AX B=  can be solved by multiplying both 
sides by the inverse of matrix A. 

AX B

A A X A B

X A B

=

( ) =

=

− −

−

1 1

1

With the help of a graphing calculator, this is a convenient way to solve a system of linear 
equations. 

5 3 1
2 5 19

x y
x y

− =
+ =

The system of equations shown above can be expressed as the matrix equation:

5 3
2 5

1
19

−

















 =











x
y

•	 Enter 
5 3
2 5

−







 as matrix A.

•	 Enter 
1

19








 as matrix B.

•	 Press 2nd  x−1  to access the MATRIX menu, choose matrix A, press x−1 , press 2nd  x−1 , 
choose matrix B, and press ENTER .

•	 The solution will be displayed as a column matrix. The first row is the value of x, and the 
second row is the value of y.
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	 Answers	 179

1	 Arithmetic to algebra
1·1	 1.  Rationals, Reals			     6.  Natural, Whole, Integers, Rationals, Reals

2.  Integers, Rationals, Reals			    7.  Rationals, Reals
3.  Rationals, Reals			     8.  Rationals, Reals
4.  Whole, Integers, Rationals, Reals	   9.  Rationals, Reals
5.  Irrationals, Reals			   10.  Irrationals, Reals

11–20. 
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0

ABDCFIG JHE

1 2 3 4 5 6 7 8 9 10

1·2	 1.  Commutative Property for Addition	   9.  Commutative Property for Multiplication
2.  Associative Property for Multiplication	 10.  Multiplication Property of Zero
3.  Identity for Addition			   11.  Inverse for Addition
4.  Inverse for Multiplication			  12.  Distributive Property
5.  Distributive Property			   13.  Identity for Multiplication
6.  Zero Product Property			   14.  Associative Property for Addition
7.  Associative Property for Addition	 15.  Inverse for Addition
8.  Identity for Multiplication

1·3	 1.  2	   6.  14	 11.  2	 16.  −12
2.  −17	   7.  24	 12.  7	 17.  −1
3.  −54	   8.  −3	 13.  −32	 18.  −48
4.  4	   9.  −8	 14.  −10	 19.  16
5.  3	 10.  18	 15.  −40	 20.  5

1·4	 1.  9	   6.  21
2.  225	   7.  3
3.  10	   8.  15
4.  4	   9.  20
5.  23	 10.  −2

1·5	 1.  11t 		       6.  13 3 10t r− − 	 11.  2 + 3x	 16.  5 3
2

p
p
−

2.  4x 		    7.  7 6 192x x− + 	 12.  3y − 7	 17.  r r2 4−

3.  3 3x y+ 		    8.  8 6 19x y− − 	 13.  t
3

11+ 	 18.  x
x2 1

8
−

+

4.  x y+ −10 3 		    9.  2 2 12x x+ + 	 14.  9n − 8	 19.  ( )( )3 2 4 6z z+ −

5.  − + −1 2 2 2x x 		 10.  10 9y x− 	 15.  w + (−w)	 20.  4 12v −

1·6	 1.  14	   6.  1
2.  −16	   7.  85
3.  1		   8.  230
4.  2	   9.  −3
5.  15	 10.  −26

Answers
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2	 Equations with one variable
2·1	 1.  x = 4 	   6.  z = 13 1.

2.  y = 16 	   7.  y = 12 1
10

3.  t = 3 	   8.  x = −6
4.  w = 37 	   9.  y = 3
5.  x = 2 	 10.  t = −7

2·2	 1.  x = 4 	   6.  w = 15 4.

2.  z = 63 	   7.  t = 75
128

3.  y = −8 2
5 	   8.  m = −12 4.

4.  t = −36 	   9.  x = −3
5.  x = 30 	 10.  z = 175

2·3	 1.  x = 13 	   6.  x = 7
2.  t = −3 	   7.  x = 16
3.  x = 5 	   8.  x = 0 5.

4.  x = 1
3

	   9.  x = 25

5.  x = 12 	 10.  x = −8

2·4	 1.  x = 5 	   6.  x = 5 8.
2.  x = −4 	   7.  x = 2 5.
3.  17 = x 	   8.  x = 31

4.  − =1 x 	   9.  13
8

= x

5.  x = 4
3

	 10.  x = − 3
2

2·5	 1.  x = 6 	   6.  2 = x
2.  x = 10 	   7.  x = 6

3.  11 = x 	   8.  x = 8
3

4.  x = 0 	   9.  x = 1
3

5.  11 = x 	 10.  x = 3

2·6	 1.  Let N = the number. N – 9 = 75
	 2.  Let x = the number. 3x – 17 = 43
	 3.  Let n = the number. 5x = 28 + x
	 4.  Let y = the number. 8y – 40 = y – 5 
	 5. � Let g = the number of games she won, and  

g – 6 = the number of games she lost.  
g + (g – 6) = 30

	 6. � Let S = the son’s age, and 5S = the father’s 
age. 5S – S = 44

  7. � Let x = the cost of a pen and x − 0.89 = the cost of a 
pencil. x + (x – 0.89) = 1.25

  8. � Let J = the number of laps Jaden ran and J + 3 = the 

number of laps Carlos ran. J J
1
4

( ( 3)) 6.25+ + =  

  9. � Let P = the price of a large bucket of popcorn and 2P 
= the price of a ticket. 2(2P) + P = 35

10. � Let W = the number of weeks and 5W = the number 
of work days. 5.50(5W) + 8W = 110

3	 Problems solved with equations

3·1		  1.	 5 nickels
	 2.	 4

1
6

 h, or 4 h and 10 min, later

	 3.	 3
1
3

 lb of peanuts and 6 2
3

 lbs of raisins

	 4.	 23 dimes
	 5.	 5:00 p.m.

  6.  250 pennies
  7.  481 students
  8. � 12 ounces of Sweet Rose Tulsi tea and 4 ounces of 

Orange Blossom green tea
  9.  1:15 p.m.
10.  2:30 p.m.
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4	 Functions

4·1		  1.	 Function; (x, 1)—a constant function that pairs each input with an output of 1. 
	 2.	 Not a function
	 3.	 Function; (x, x)—a function that matches each input with itself as an output; called an identity function.
	 4.	 Function; (x, 7 - x)—creates the output by subtracting the input from 7. 
	 5.	 Function; no obvious rule.
	 6.	 Function; (x, x - 1)—subtracts 1 from the input to produce the output.
	 7.	 Function; (x, x – 10)—subtracts 10 from the input to produce the output.
	 8.	 Function; (x, 2x)—doubles the input to create the output.
	 9.	 Function; (x, x - 3)—matches each input with a number 3 less than the input. 
	10.	 Not a function

4·2		  1.	 Function
	 2.	 Function
	 3.	 Not a function
	 4.	 Function
	 5.	 Function
	 6.	 Function
	 7.	 Function
	 8.	 Not a function
	 9.	 Not a function
	10.	 Not a function

4·3		  1.	 If = +f x x( ) 2 7, ( ) ( )= + =f 3 2 3 7 13 and ( ) ( )− = − + = −f 7 2 7 7 7

	 2.	 If = +g x x( ) 1
2

11
2

, ( ) ( )− = − + = − + = −g 8 1
2

8 11
2

4 11
2

2 1
2

 and ( ) ( )= + = + =g 5 1
2

5 11
2

2 1
2

11
2

4

	 3.	 If = −f x x( ) 4
3

, ( ) = − = =f 13 13 4
3

9
3

3 and ( )− = − − = − = −f 5 5 4
3

9
3

3

	 4.	 If = −g x x( ) 9 2 , ( ) ( )− = − − = + =g 5 9 2 5 9 10 19 and 



 = − 



 = − =g 1

2
9 2 1

2
9 1 8

	 5.	 If f x x( ) 2(4 ) 3= − + , f (6) 2(4 6) 3 2( 2) 3 1= − + = − + = −  and f
1
2

2 4
1
2

3 2 4
1
2

3 9 3 12−



 = − −











+ = 



 + = + =

	 6.	 If = −g x x( ) 6 1, ( ) ( )= − = −g 0 6 0 1 1 and ( ) ( )= − =g 6 6 6 1 35

	 7.	 If = −f x x( ) 82 , ( ) ( )= − = − = −f 2 2 8 4 8 42  and ( ) ( )− = − − = − = −f 2 2 8 4 8 42

	 8.	 If = −g x x x( ) 22 , ( ) ( ) ( )− = − − − = + =g 4 4 2 4 16 8 242  and ( ) ( ) ( )= − = − =g 4 4 2 4 16 8 82

	 9.	 If f x x x( ) 12= + − , f (5) (5) 5 1 25 5 1 30 1 292= + − = + − = − =  and f ( 5) ( 5) ( 5) 1 25 5 1 20 1 192− = − + − − = − − = − =

	10.	 If = + −g x x x( ) 3 92 , ( ) ( ) ( )= + − = + − =g 3 3 3 3 9 9 9 9 92  and ( ) ( ) ( )= + − = −g 0 0 3 0 9 92

3·2		  1.	 The original price was $65.
	 2.	 14.5 feet wide and 35.5 feet long
	 3.	� Two sides each 17 inches long and one 20 

inches
	 4.	 The number is 60.
	 5.	 The numbers are 31, 32, and 33.

	 6.	 7 feet by 14 feet
	 7.	 The numbers are 88, 89, 90, 91, and 92.
	 8.	 The numbers are 28, 30, 32, and 34.
	 9.	 An increase of 11.1% would be required.
	10.	 The advertised price was $125.

17_Wheater_Answers_p179-230.indd   181 24/03/22   5:27 PM



	 182	 Answers

4·4		  1.	 = +x37 4 9, = x28 4 , x = 7
	 2.	 − = −x79 12 19, − = x60 12 , x = -5

	 3.	 = w1,245 2.49 , = w1,245
2.49

, w = 500

	 4.	 = − x65 51 2 , = − x14 2 , x = -7

	 5.	 =
t

35 140 , =t35 140, t = 4

	 6.	 = +x18
5

2, = x16
5

, x = 80

	 7.	 − = + x9 12 3 , − = x21 3 , x = -7
	 8.	 = −z61 8 11, = z72 8 , z = 9

	 9.	 = −x9.5 3 1
4

, = −x38 3 1, = x39 3 , x = 13

	10.	 = +x22 5
6

1
2

6 1
3

, = x16 1
2

1
2

, x = 33

4·5		  1.	 ≠x 3
	 2.	�  ≠v 0; it would be reasonable to think that v > 0 because a negative velocity would suggest that you were 

driving backwards. 
	 3.	�  ≥T 0 because you cannot sell a negative number of tickets. Also, T would be a whole number because 

you would not sell a fraction of a ticket. 
	 4.	 ≥t 0
	 5.	�  ≥ −x 5 because the number under the square root sign cannot be negative. 

5	 Coordinate graphing

5·1	 1–5. 

A

E

D

C

B

  6.  Quadrant II		    9.  Quadrant III
  7.  Quadrant I		  10.  Quadrant IV
  8.  Quadrant IV

5·2	 1.  d = 3 10 		    6.  a a= =4 10,

2.  d = 17 		    7.  d d= = −15 9,
3.  d = 29 		    8.  c c= =15 1,
4.  d = 34 		    9.  b b= − =10 8,
5.  d = 7 		  10.  a = ±4
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5·3	 1.  (3.5, 5.5)		    6.  x = 2
2.  (−2, 4.5)		    7.  x = 7
3.  (−3, −2)		    8.  y = 9
4.  (4, 4)		    9.  x = −5
5.  (2, −3)		  10.  x = 16

5·4	 1. 

x −2 −1 0 1 2
y −4 −1 2 5 8

2. 

x −2 −1   0   1 2
y −8 −6 −4 −2 0
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3. 

x −6 −3 0 3   6
y −4   0 4 8 12

4. 

2

2

10

10

x −2 −1  0 1 2
y 12  11 10 9 8
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5. 

2

2

6

10

10

x −2 −1 0 1   2
y   3   5 7 9 11

6. 

6

2

6

10

x −2 −1 0 1 2
y 12   9 6 3 0

17_Wheater_Answers_p179-230.indd   185 24/03/22   5:27 PM



	 186	 Answers

7. 

x −8 −4   0 4 8
y −9 −6 −3 0 3

8. 

x −4 −2 0 2 4
y   3  4 5 6 7
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  9. 

x −6 −3   0   3   6
y   2   0 −2 −4 −6

10. 

x −6 −3   0 3 6
y −9 −5 −1 3 7

5·5	 1.  m = − 3
5

		    6.  y = −2

2.  m = − 2
3

		    7.  x = 4

3.  m = 0 		    8.  y = 4 5.

4.  m = 1
4

		    9.  x = −8

5.  Undefined		  10.  y = 3
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5·6	 1. 

2. 

3. 
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4. 

2 6

2

6

10

10

5. 

2 6

2

6

10

10

6. 
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7. 

2 6

2

6

10

10

8. 

9. 
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10. 

5·7	   1.  Vertical
  2.  Horizontal
  3.  Vertical
  4.  Oblique
  5.  Horizontal

  6. 
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7. 

8. 

9. 
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10. 

5·8	 1.  y x= +3 8 		    6.  y x= − −3
2

7

2.  y x= − +5 2 		    7.  y x= +2 3

3.  y x= +2
3

6 	 	   8.  y x= +2
3

2

4.  y x= −4 5 		    9.  y x= −4
3

3

5.  y x= +1
2

1 		  10.  y x= − +3
2

6

5·9	 1.  Perpendicular	   6.  y x= −5 16

2.  Parallel		    7.  y x= − +3
4

2

3.  Neither		    8.  y x= − +4
3

7
3

4.  Parallel		    9.  y x= − +1
4

14

5.  Perpendicular		  10.  y x= −2 16

6	 Absolute value

6·1		  1.	 ( )− + =6 4 5 14
	 2.	 − = − =6 17 11 11
	 3.	 − = −6 17 11
	 4.	 − = −16 18 2
	 5.	 − =16 14 2

	 6.	 ( )− + = − = =2 8 12 2 2 2 2 2 4
	 7.	 ( ) ( )+ =2 2 8 1 12
	 8.	 − + − = − − = −6 5 16 1 6 21 1 16
	 9.	 − − + = − = −1 12 2 2 1 12 11
	10.	 − − + = − + = −1 12 2 2 1 10 2 7

6·2		  1.	 x x6 28
3

= = −

	 2.	 x x
10
3

7
3

= = −

	 3.	 x x9 9.8= = −
	 4.	 x x5 6= = −
	 5.	 x x5.5 7.25= = −

	 6.	 x x2 Reject
10
7

= = −





	 7.	 x x5 Reject 10( )= = −
	 8.	 x x9.5 0.75= =
	 9.	 x x4 2= = −

	10.	 x x3
19
13

= = −
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6·3		  1.	 ( ) = − = − =f 7 7 9 2 2

	 2.	 −



 = −



 + = − + = − =v 4 1

2
2 4 1

2
1 9 1 8 8

	 3.	 ( ) ( )− = − − − = − − = − = −g 2 3 2 4 11 10 11 10 11 1

	 4.	 ( ) = − + = − + = + =s 8 5 8 8 3 8 3 8 11

	 5.	 ( ) ( )− = − − + = − − + = − + = + =p 7 5 7 23 23 35 23 23 58 23 58 23 81

	 6.	 − =
− =

=
− = −

=

x
x

x
x

x

9 8
9 8

17
9 8

1

	 7.	 z
z

z

z

z
z
z

3 7 19
3 7 19

3 26

8
2
3

3 7 19
3 12

4

− =
− =

=

=

− = −
= −
= −

	 8.	
+ − =
+ =

+ =
=
=

+ = −
= −
= −

t
t

t
t
t

t
t
t

2 4 11 3
2 4 14

2 4 14
2 10

5

2 4 14
2 18

9

	 9.	
+ + =
+ =

+ =
= −

+ = −
= −

t
t

t
t

t
t

6 3 6
6 3

6 3
3

6 3
9

	10.	
− − =
− =

− =
− = −

=

− = −
− = −

=

x
x

x
x
x

x
x
x

10 6 0
10 6

10 6
4

4

10 6
16

16

	11.	 The range of ( ) = +v t t 8 is ( ) ≥v t 8.

	12.	 The range of ( ) = +f x x 4  is ( ) ≥f x 0.

	13.	 The range of ( ) = −p z z 7 is ( ) ≥ −p z 7.

	14.	 The range of ( ) = − +s t t2 11 13 is ( ) ≥s t 13.

	15.	 The range of ( ) = −g x x  is ( ) ≤g x 0.

17_Wheater_Answers_p179-230.indd   194 24/03/22   5:27 PM



	 Answers	 195

6·4	 1. 

x 2 3 4 5 6
y 2 1 0 1 2

2. 

x −2 −1   0   1   2
y −1 −2 −3 −2 −1
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3. 

x −2 −1 0 1 2
y   5   3 1 3 5

4. 

x −3 −2 −1 0 1
y   4   2   0 2 4
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5. 

x −2 −1 0   1   2
y −6 −3 0 −3 −6

6. 

x −9 −7 −5 −3 −1
y   2   1   0   1   2
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7. 

x −1   2 5   8  11
y −2 −1 0 −1 −2

8. 

x 0 1 2 3 4
y 3 2 1 2 3
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  9. 

x −7 −6 −5 −4 −3
y −4 −5 −6 −5 −4

10. 

x −5 −4 −3 −2 −1
y −8 −6 −4 −6 −8
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7	 Inequalities
7·1	   1.  x ≥ 9  

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  2.  x > 3   –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  3.  x ≥ −4  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  4.  x < 3  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  5.  t ≥ 3  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  6.  y > 7
2

 
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  7.  x ≥ 7  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  8.  x ≥ −4  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  9.  x < −1  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

10.  x ≤ 7
2

 
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

7·2	   1.  x x> < −40 6or  
–50 –40 –30 –20 –10 0 10 20 30 40 50

  2.  15 24< <y  
–4–6 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

  3.  − ≤ < −2 3
4

x   –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  4.  x x≥ <5 2or  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  5.  − < ≤4 1x  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  6.  x x> − < −2
3

9or  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  7.  − ≤ ≤1 1
15

y  
–2 –1 0 1 2

  8.  20 49
3

> >x  
0 2 4 6 8 10 12 14 16 18 20

  9.  x x> − >1 10or ,  which is equivalent to x > −1 

        –5 –3 –1 0 2 4 6 8 10 12 14

10.  y y> ≥3 7and ,  which is equivalent to y ≥ 7  

       –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10
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7·3	   1.  − < <1 8x  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  2.  − ≥ ≥22
3

4x xor  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  3.  − > >37
3

9x xor  
–20 –16 –12 –8 –4 0 4 8 12 16 20

  4.  1 8 0 2. .≥ ≥ −x  
–2 –1 0 1 2

  5.  3
7

3> >x x or   
–5 –4 –3 –2 –1 0 1 2 3 4 5

  6.  15 3< <x x or   
–2 0 2 4 6 8 10 12 14 16 18

  7.  − ≥ ≥43
11

3x x   or  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

  8.  12 5≤ ≤x x   or  
–20 –16 –12 –8 –4 0 4 8 12 16 20

  9.  1 6 2.    < <x xand  
–2 –1 0 1 2

10.  x x≥ ≤4 2   or  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

7·4	   1. 
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  2. 

  3. 

  4. 
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  5. 

  6. 

  7. 
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  8. 

  9. 

10. 
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8	 Systems of linear equations and inequalities

8·1  1. 

(2, 4)

2. 

(–2, 4)

3. 

(4, 4)

4. 

(–3, –3)

5. 
(–4, 6)

6. 

No solution
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7. 

(7, –1)

8. 

(7, 0)

  9. 

(–3, 4)

10. 

(4, 1)

8·2  1. 
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2. 

3. 

4. 
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5. 

6. 

7. 
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8. 

9. 

No solution.
Shaded areas
do not overlap.

10. 
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8·3	 1.  x y= =5 5, 		    6.  x y= =54 8,
2.  x y= =4 8, 		    7.  x y= =3 1,
3.  x y= =3 9, 		    8.  x y= =9 4,
4.  x y= =30 27, 		    9.  x y= =11 2,
5.  x y= =19 23, 		  10.  x y= − =1 5,

8·4	 1.  x y= =6 2, 		    6.  x y= =2 3,
2.  x y= =10 7, 		    7.  x y= =3 0,
3.  x y= =4 1, 		    8.  x y= =3 10,
4.  x y= =7 1, 		    9.  x y= = −8 7,

5.  x y= =2 1
2

, 		  10.  x y= =3 3
2

,

8·5	 1.  a b1, 6= = 		    6.  x y= =1
5

6
5

,

2.  x y= =1 10, 		    7.  x y= = −3 3,
3.  x y= = −2 5 2. , 		    8.  x y= − = −2 5,

4.  x y= =7 3, 		    9.  x y= − =1
6

4
3

,

5.  x y= =5 2, 		  10.  x y= =0 6 6 6. , .

8·6	 1.  Dependent		   6.  Consistent
2.  Inconsistent		   7.  Consistent
3.  Consistent		   8.  Inconsistent
4.  Inconsistent		   9.  Consistent
5.  Dependent		 10.  Dependent

8·7	   1.  7 nickels
  2.  1.25 hours
  3.  $2,600 at 4% and $3,400 at 7%
  4.  12 problems correct
  5.  First number is 16, second is 10.
  6.  10 pounds of $1.60 per pound tea and 30 pounds of $2 tea
  7.  9 web pages
  8.  188 chickens
  9.  36 brownies
10.  There are a total of 20 coins, 13 nickels, and 7 dimes.

9	 Powers and polynomials

9·1	 1.  x11 		    6.  t
t

− =1 1 	       11.  x0 1=

2.  y6 		    7.  y7 	       12.  x10

3.  6 6x 		    8.  x
x

− =5
5

1 	       13.  x 2

4.  21 10x 		    9.  x 2 	       14.  t
t

− =1 1

5.  x 6 		  10.  y21 	       15.  x6

9·2	 1.  4 10x

2.  −8 9x

3.  20 8a

4.  −27 5 15x y

  5.  72 11b

  6.  x10

9

  7.  4
25

4x

  8.  256
81 8t

  9.  −64
9

3 12x y

10.  81
16

8

4

x
y
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9·3	 1.  2 3 5 73 2x x x+ + − ; degree 3		    6.  − − + +3 4 8 47 2z z z ; degree 7
2.  5 8 9 112 7 2t t t t+ + − − ; degree 12	   7.  w w w5 39 3 7− − + ; degree 5
3.  − + − +12 5 2 811 6 3y y y ; degree 11	   8.  − + − −b b b4 2 3 4; degree 4
4.  Not a polynomial; variable under radical	   9.  Not a polynomial; variable in denominator
5.  2 4 35 3x x x− + ; degree 5			   10.  − + − +7 8 4 63 2y y y ; degree 3

9·4	 1.  14 9 12w w− − 				     6.  4 3 32b b− +

2.  2 5 42a a− − 			     7.  11 13 22x x− +

3.  − + −9 41 242x x 			     8.  − − +2 7 22x x

4.  − − +4 3 322y y 			     9.  − + +3 22x x

5.  4 4 2− +b b 			   10.  2 16 32x x− +

9·5	 1.  −6 7b 		    6.  18 6 3x y 	 11.  ( )( )2 3 63 2 5x x x− = −

2.  30 4 4x y 		    7.  −36 5 6w x 	 12.  ( )( )− − =3 4 122 5 7b b b

3.  −36 5 2 10x y z 		    8.  4 6x 	 13.  ( )( )− = −5 3 154 2 2 6 3x y x y x y

4.  −3 2 2 3a b c 		    9.  20 8b 	 14.  ( )( )− − =3 2 62 4 2 5x z z x z

5.  40 3a b 		  10.  −27 3 9r t 	 15.  ( )6 1
2

32 2 3 3xy x y x y−






= −

9·6	 1.  10 153 2a a+ 				      9.  4 3 5 7 1010 8 7 5 4 3x x x x x x− + − + −

2.  − + +2 6 44 3 2x x x 			   10.  9 6 216 4 2 4 4 3 9 3 6a b c a b c a b c− +

3.  22 6 104 3 2y y y− + 			   11.  3 1 3 3( )x x+ = +

4.  − + −6 9 125 4 3b b b 			   12.  a b ab a( )− = −5 5

5.  3 5 23 2 2 3x y x y xy+ − 			   13.  4 2 8 4( )x y x y− = −

6.  25 35 54 3 2 2 3x y x y x y− + 			   14.  7 1 7 7 49 2x x x x( )+ = +

7.  8 16 242x xy xz+ − 			   15.  2 2 4 22 2ab a b a b ab( )+ = +

8.  − +5 53 4a b ab 	

9·7	 1.  x x2 10 16+ + 		    8.  5 13 6 2− −b b 	         15.  49 9 2− x

2.  y y2 13 36− + 		    9.  6 352x x+ − 	         16.  ( )( )x x x x+ + = + +3 5 622

3.  t t2 4 12+ − 		  10.  − + −10 29 102x x 	         17.  ( )( )x x x x− − = − +7 9 1422

4.  2 2 242x x+ − 		  11.  x 2 16− 	         18.  ( )( )2 1 2 9 42a a a a+ + = + +4

5.  3 26 92y y− − 		  12.  x 2 9− 	         19.  ( )( )3 2 3 17 102x x x x− − = − +5

6.  15 2 242x x+ − 		  13.  4 12x − 	         20.  ( )( )2 3 3 6 152t t t t+ − = − −5

7.  6 29 52x x+ − 		  14.  9 252x −

9·8	 1.  2 19 38 213 2a a a+ + + 			     6.  x x x3 26 12 8− + −
2.  6 13 16 153 2b b b+ + + 			     7.  t3 8−
3.  4 39 54 163 2c c c− + + 			     8.  x3 1+
4.  8 18 17 19 74 3 2x x x x− + − + 		   9.  x x x4 34 16 16+ − −
5.  y y y3 2 19 4− − + 			   10.  2 8 34 154 3 2y y y y− − + −
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9·9	 1.  8 3 2c d 		    6.  1 	 11.  x + 3
2.  5 4d 		    7.  −3 2t 	 12.  9 13− y
3.  4 7x 		    8.  −18 2r 	 13.  8 7 6 58 7 6 5z z z z− + −
4.  5 4y 		    9.  8 9 4x x− 	 14.  3 9 273 2 2 3 4x y x y xy− +
5.  −4 2x y 		  10.  5 73 5y y− 	 15.  3 42x x− +

9·10	 1.  x − 7 		    6.  2 1 2
3

a
a

+ +
+

2.  y + 4 		    7.  2 1b −

3.  2 3x + 		    8.  4 5 5
3 5

2x x
x

− − +
+

4.  7 52x + 		    9.  x 2 6+

5.  3 6 3
3 8

x
x

− + −
−

		  10.  4 2 12y y− +

10	 Factoring

10.1	   1.  2 2x  
	2.  5r 
	3.  11

	4.  2x
	5.  ax
	6.  8 3t  
	7.  az

	  8.  3 2y  
	  9.  2a
	10.  3

10·2	 1.  y y( )−15 		    6.  − + −a a a2 21 2( )
2.  3 2b b( )− 		    7.  25 1 2 54 3x x x( )− +
3.  8 4 5ab a( )+ 		    8.  8 3 2r r t( )+ +
4.  5 3 42( )y y+ + 		    9.  16 32x y y x( )−
5.  x y x xy y3 4 5 3( )− + 		  10.  3 2 5xy x xy( )+ +

10·3	 1.  ( )( )x x+ +5 7 		   6.  ( )( )x x− +3 1
2.  ( )( )x x+ +4 7 		    7.  ( )( )x x− −9 2
3.  ( )( )x x− −3 5 		    8.  ( )( )x x− +11 2
4.  ( )( )x x− −3 4 		    9.  ( )( )x x+ −13 3
5.  ( )( )x x+ −5 4 		  10.  ( )( )x x+ +4 8

10·4	 1.  ( )( )3 5 2x x+ + 	   6.  ( )( )10 1 5x x+ −
2.  ( )( )2 1 1x x− − 		    7.  ( )( )3 5 3 4x x− −
3.  ( )( )2 1 3x x+ + 		    8.  ( )( )3 2 6 1x x+ +
4.  ( )( )6 1 2 5x x+ + 		    9.  ( )( )3 1 5 6x x+ −
5.  ( )( )2 3 3 4x x+ + 		  10.  ( )( )x x− −6 4 5

10·5	 1.  ( )( )x x+ −7 7 		   6.  ( )3 7 2y +
2.  ( )x + 3 2 		    7.  ( )( )2 9 2 9x x+ −

3.  ( )( )6 1 6 1t t+ − 		    8.  ( )2 1 2x +
4.  ( )3 4 2t − 		    9.  ( )( )4 3 4 3a y a y+ −

5.  ( )( )4 4+ −y y 		  10.  ( )x − 6 2

10·6	 1.  ( )( )( )x x x+ − +1 1 2  	 6.  ( )( )z x+ +2 2 3

	2.  ( )( )( )x x x+ − −2 2 3  	 7.  ( )( )y x+ +1 5 3

	3.  ( )( )( )x x x+ − +10 10 2  	 8.  ( )( ) ( )( )( )( )y x x x y y2 24 1 1 1 2 2− − = + − + −

	4.  ( )( )x x2 4 2 1+ −  	 9.  ( )( ) ( )( )( )x y x y y2 2 21 9 1 3 3+ − = + + −

	5.  ( )( )y x− +3 3 5  	 10.  ( )( )y x2 24 1+ +
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11	 Radicals

11·1	 1.  6	 6.  12
	2.  −9	 7.  −2
	3.  ±5	 8.  −2
	4.  3	 9.  10
	5.  −5	 10.  No real root

11·2	 1.  3 11 4< < , 11 3 3≈ . 	 6.  4 20 5< < , 20 4 5≈ .

	2.  9 90 10< < , 90 9 5≈ . 	 7.  2 10 33< < , 10 2 23 ≈ .

	3.  12 150 13< < , 150 12 2≈ . 	 8.  2 16 33< < , 16 2 53 ≈ .

	4.  6 48 7< < , 48 6 9≈ . 	 9.  3 30 43< < , 30 3 13 ≈ .

	5.  1 3 2< < , 3 1 7≈ . 	 10.  − < − < − − ≈ −5 81 4 81 4 33 3, .

11·3	 1.  4 2 		    6.  2 3y y
2.  6 2 		    7.  5 22b ab
3.  a a 		    8.  3 3xy x
4.  7 2 		    9.  7a a
5.  2 2x 		  10.  4 33a bc ab

11·4	 1.  6
2

		    6.  − +( )9
2

5 3

2.  24 5
5

		    7.  − +( )5 1 5

3.  5 		    8.  − +16 5 7
9

4.  3 		    9.  3
2

5 3+( )
5.  10 		  10.  − −11 6 3

11·5	 1.  6 3 		    6.  4 7

2.  3 5 		    7.  −3 11

3.  12 		    8.  10 6

4.  12 2 		    9.  4 3

5.  7 5 		  10.  10 5

11·6	 1.  x = 9 		    6.  No solution
2.  No solution		    7.  x = 17
3.  x = 81 		    8.  x = 26
4.  No solution		    9.  x = 11

5.  y = 50 		  10.  x = 13
9

11·7	 1.  x = 5 		    6.  x = 109
8

2.  x = 5 		    7.  x = 9
3.  x = 4 		    8.  x = 25
4.  x = −1 25. 		    9.  x = −1 75.
5.  x = 3 		  10.  x = 11
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11·8	 1. 
2

1

1 2 3 4

2. 

3

2

4

1

1 2 543 6 7 8 9

3. 

1–1 2 543 6 7 8 9

3

2

4

1

4.  1 2 543 6 7 8 9

–2

–3

–1

–4

–5

5. 

1 2 543 6 7 8 9

4

3

5

2

1

6. 

1 2 543 6 7 8 9

4

3

5

2

1

7.  1 2 543 6 7 8 9

–2

–3

–1

–4

–5

  8. 

1 2 543 6 7 8 9

4

3

5

2

1

  9. 

1–1–2–3 2 543 6 7 8 9

3

2

4

5

1

10.  1 2 3 4–4 –3 –2 –1

–10
–11
–12
–13
–14

–1
–2
–3
–4
–5
–6
–7
–8
–9
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12	 Quadratic equations and their graphs

12·1	 1.  x = ±8 		    6.  t = ±10 10

2.  x = ±4 		    7.  y = ±5 3

3.  x = ±5 		    8.  x = ± 2
3

4.  x = ±3 2 		    9.  y = ± 5
8

5.  x = ±4 		  10.  x = ±3 3

12·2	 1.  x x= = −7 3,  		    6.  y = ±4 23
2.  x x= = −2 4,  		    7.  x x= =7 2, 

3.  x = ±3 4 3 		    8.  x = − ±2 2 2

4.  x = − ±1 5 3 		    9.  a = − ±5 37
2

5.  x = ±5 2 3
3

		  10.  t = ±5 17

12·3	 1.  x x= = −3 7,  		    6.  t = − ±3 2 6

2.  t t= = −2 5,  		    7.  x x= = −1 3
4

, 

3.  y y= = −8 4,  		    8.  x x= = −1 1
3

, 

4.  x x= = −3 2,  		    9.  x x= − =1 5
3

, 

5.  x = − ±3 3 2 		  10.  x x= = −2
3

1
2

, 

	 11.  b ac2 4 61− = , two irrational solutions	 16.  b ac2 4 1− = , two rational solutions
12.  b ac2 4 11− = − , no real solutions	 17.  b ac2 4 44− = , two irrational solutions
13.  b ac2 4 25− = , two rational solutions	 18.  b ac2 4 31− = − , no real solutions
14.  b ac2 4 0− = , one rational solution	 19.  b ac2 4 0− = , one rational solution
15.  b ac2 4 24− = , two irrational solutions	 20.  b ac2 4 69− = , two irrational solutions

12·4	 1.  x x= − = −2 3,  	   6.  x x= =5 1, 
2.  x x= =4 3,  		    7.  x x= = −0 3, 
3.  y y= = −2 4,  		    8.  x x= =0 5, 

4.  a a= = −5 2,  		    9.  x x= =1 1
2

, 

5.  x x= = −4 5,  		  10.  x x= = −3 5
2

, 

12·5	 1.  (3, 0), (1, 0), (0, 3)	   6.  x = 4, (4, −1)
2.  (5, 0), (−1, 0), (0, −5)		    7.  x = −2, (−2, −6)
3.  (−2, 0), (0, 0)		    8.  x = 1, (1, 1)
4.  (3, 0), (4, 0), (0, 12)		    9.  x = 3, (3, 2)

5.  (−1, 0), 1
2

0, 






, (0, 1)		  10.  x = 2, (2, 11)
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12·6	 1. 

1

2

1

–1

–2

–1

Vertex
(0, –1)

2. 

2

2 4 6 8

4

6

8

18

16

14

12

10

–4

–6

–8

Vertex
(4, 16)

–2

3. 

2

1 2 3 4 5

4

6

8

–2
–1–2–3–4–5–6–7

–4

–6

–8

–10

–12

–14

–16

–18

10

Vertex
(–1, –16)

4. 

2

1 2 3 4 5

4

6

8

–2–3–4–5
–2

–4

–6

–8

–10

10

12

14

Vertex
(0.5, –1.25)

–1

5. 

2

1 2 3 4 5 6

4

6

8

–2–3
–2

–4

–6

–8

–10

10

12

14

Vertex
(2, –1)

–1

6. 

2

1 2 3 4

4

6

–2–3

–2

–4

–6

Vertex
(1, 6)

–1
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7. 

6

4

8

10

–2–3–4–5–6

–2

4

2

Vertex
(–3, 0)

–1

8. 

2

1 2 3 4

4

6

–2–3

–2

–4

–6

Vertex
(0, 4)

–1

9. 

3

1 2 3

4

5

–2–3

–1

2

1

Vertex
(–0.25, –1.125)

–1

10. 

1

1 2 3 4 5

2

3

4

5

6

7

8

–2–3–4–5

–8

–9

–7

–6

–5

–4

–3

–2

–1

Vertex
(0, –9)

–1

12·7	 1.  x = 5 or x = 17
	 2.  x = ≈111 10 5.  
	 3.  3, 5, and 7 or −1, 1, and 3
	 4.  The base is 6 meters.
	 5.  Approximately 8.1 seconds
	 6. � The dimensions of the rectangle are 6 inches by 8 inches.
	 7.  Approximately 1.7 seconds
	 8. � The original rectangle was 2 feet by 6 feet or 3 feet by 9 feet.
	 9.  The two numbers are 7 and −2.
	 10.  Approximately 1.2 seconds
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13	 Proportion and variation

13·1	 1.  45°, 60°, 75°	 	 	 	   6.  20 and 24
2.  8 ft and 12 ft			     7.  6 and 14
3.  104 and 39 			     8.  51
4.  20 oz			     9.  8 and 20
5.  24, 32, and 64			   10.  6 and 20

13·2	 1.  x = 4 2. 				      6.  x = 29
2.  w = 15 			     7.  x = ±8
3.  x = 25 			     8.  x = ±5

4.  x 4
1
6

= 			     9.  x = ±13

5.  x = 15 			   10.  x x= = −7 4, 

13·3	 1.  42				      6.  0.009 V
2.  100			     7.  143 mi
3.  312			     8.  0.6 mi
4.  1275			     9.  304 cm3

5.  700			   10.  70 mi

13·4	 1.  k = 3, y = 3 				      6.  k = 128, v = =
16
3

5
1
3

2.  k = 32, x = 16 			     7.  k = 88, w = 4

3.  k = 72, y = 8 			     8.  k = 24, B =
1
6

 
4.  k = 132, t = 44 			     9.  k = 234, x = 13
5.  k = 540, a = 12 			   10.  k = 288, a = 24

13·5	 1.  y = 180				      6.  z = 42
2.  x = 8			     7.  20 cm
3.  z = 7			     8.  Approximately 683 N
4.  y = 5			     9.  Approximately 7.8 ft3

5.  x = 21			   10.  0.1875, or  3
16

, ohm

14	 Rational equations and their graphs

14·1	 1.  2 				      6.  x
x

+
+

6
4

2.  1
3

			     7.  x
x
+
−
2

5 1

3.  a
a

+
+

7
6

			     8.  x
x

−
−

4
1

4.  2
9

y
y −

			     9.  x
x

+
−

5
1

5.  2
8y −

			   10.  a
a − 5

14·2	 1.  1				      6.  x
x
− 2

2.  x x
x

2 8 15
1

+ +
+

			     7.  x − 9

3.  7
x

			     8.  2

4.  3 5 3
4 2

3 6 45
2 8

2

2

( )( )
( )( )

a a
a a

a a
a a

+ −
+ −

= + −
+ −

	   9.  x
x
+ 5

2

5.  ( )5 25 102 2− = − +y y y 			   10.  x 2

2
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14·3	 1.  9
4
+ x 				      6.  3 27

5
x
x

+
+

2.  1
2x +

			     7.  3
7x +

3.  3
4

x
x −

			     8.  ( )( )x x
x

x x
x

− +
+

= − −
+

3 1
4

2 3
4

2

4.  x
x x

x
x x

−
− +

= −
− −

3
2 1

3
22( )( )

			    9.  x
x

+
−

2
2

5.  2				   10.  ( )
( )
y
y

+
−

8
8

2

2

14·4	 1.  5 5
6

x − 				      9.  10 3 4
3 2

10 3 4
3 6

2 2

2

x x
x x

x x
x x

− −
−

= − −
−( )

2.  5 20
24

x − 			   10.  2 3 5
5 5

2 3 5
25

2 2

2

x x
x x

x x
x

+ +
+ −

= + +
−( )( )

3. 
6 1

1 2
6 6

22

( )
( )( )

x
x x

x
x x

−
+ −

= −
− − 		  11.  a a

a a

2

2

6 3
7 3
+ +

+ −( )( )

4.  x x
x x

x x
x x

2 2

2

5 15
5 2

5 15
3 10

+ −
− +

= + −
− −( )( )

	 12.  x
x x

+
− −

14
3 2( )( )

5.  7 4
4 4 3

7 4
16 12

2 2x x
x

x x
x

−
−

= −
−( )

			   13.  2 3
2

x
x

−
−

6.  5 6
2 2

5 6
42

x
x x

x
x

−
+ −

= −
−( )( )

			   14.  x x x
x x

x x x
x

3 2 3 2

2

3 11 1
5 5

3 11 1
25

+ − −
+ −

= + − −
−( )( )

7.  −
− +

= −
−

5
5 5

5
252

t
t t

t
t( )( )

			   15.  x
x x x

+
+ + −

24
3 2 3( )( )( )

8.  15
3 3

15
92( )( )x x x+ −

=
−

14·5	 1.  x y
x y

2 2

2 2

+
−

				      6.  1
1

−
+

x
x

2.  y x+ 			     7.  x
x

−
+

5
3

3.  24
1 4− x

			     8.  x
x

−
+

4
4

4.  x
y

			     9.  y y
y

y y
y

( )4
2 3

4
2 3

2+
+

= +
+

5.  −
− + −

y
xy x x y

2

2 			   10.  3 4
1

x
x

+
+

14·6	 1.  x = 4
3

				      6.  x = 10

2.  x = 3 			     7.  x = 5

3.  x = 24 			     8.  x x= =0 3, 

4.  a = 8 			     9.  t = 2

5.  x = 1
21

			   10.  x = 5
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14·7	 1.  x x= =1
3

4,  		    6.  y = −5

2.  x = −0 9. 		    7.  x = 3

3.  x = 6 		    8.  x = 8

4.  x = 5
3

		    9.  x = −9

5.  x = 2
3

		  10.  x = 4

14·8	 1. 

1

1 2 3 4 5

2

–2–3–4–5

–2

–1

–1

2. 

1

2

3

5

6

7

1 2 3 4 5 6 7

4

8 9

–4

–2

–1

–3

–5

–6

–7

–8

8

–2–3–4–5–6–7–8–9 –1
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3. 

2

6

2 4 6

4

8

–2–4–6–8

–4

–2

–6

–8

8

4. 

2

6

2 3 4 5 6 7

4

8 9

–2–3–4–5–6–7–8–9

–4

–2

–6

–8

8

–1

1
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5. 

1

2

3

5

6

7

1 2 3 4 5 6 7

4

8 9

–2–3–4–5–6–7–8–9

–4

–2

–1

–3

–5

–6

–7

–8

–9

8

9

–1

6. 

1

2

3

5

6

7

1 2 3 4 5 6 7

4

8 9

–2–3–4–5–6–7–8–9

–4

–2

–1

–3

–5

–6

–7

–8

–9

8

9

–1

7. 

1

2

3

1 2 3 4 5 6 7 8 9

4

–2–3–4

–4

–2

–1

–3

–1
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  8. 

1

2

3

1 2 3 4 5 6 7 8

8

9

–2–3–9 –8 –7 –6 –5 –4

–8

–9

–2

–3

–4

–5

–6

–7

4

5

6

7

9

–1
–1

  9. 

1

2

3

1 2 3 4 5 6 7 8 9–2–3–9 –8 –7 –6 –5 –4

–2

–3

–4

4

–1
–1

10. 

1

2

3

1 2 3 4 5 6 7 8 9–2–3–8–9 –7 –6 –5 –4

–2

–3

–4

–5

–6

–7

–8

–9

8

9

7

6

5

4

–1
–1
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15	 Exponential growth and decay

15·1	 1.  Exponential	 6.  a = 2, b = 3
	2.  Linear	 7.  a = 3, b = 2

	3.  Quadratic	 8.  a = 
1
2

, b = 3

	4.  Exponential	 9.  a = −2, b = 1
3

	5.  Quadratic	 10.  a = 2, b = 10

15·2	 1.  y = 162	 6.  y = −0.02
	2.  y = 8	 7.  x = 2
	3.  y = −125	 8.  x = 2
	4.  y = 9	 9.  x = 3
	5.  y = 3,000,000	 10.  x = 4

15·3	 1.  $5304.50 		    6.  $6204.59
2.  $14,802.44		    7.  $8492.03
3.  $2977.73 		    8.  $5977.69
4.  $3052.24		    9.  $30,491.91
5.  $327,148.96 		  10.  $59,913.95

15·4	 1.  Growth		    6.  Growth, 3,355,443,200 bacteria
2.  Decay		    7.  Decay, 102.4 mg
3.  Decay		    8.  Growth, approximately 379,518
4.  Growth		    9.  Decay, $16,355.33
5.  Decay		  10.  Decay, 36,652.78 acres

14·9	 1.  9 hours
	 2.  3 months
	 3.  2.1 days

	 4.  13
1
3

 hours

	 5.  12 hours

	 6.  67.5 minutes
	 7.  3 cm
	 8.  5.5 hours
	 9.  2 6 1012. ×  Newtons
	 10.  3 ft
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15·5	 1. 

10

12

14

16

8

6

4

2

1 2 3 4 5–2–3–4–5 –1

2. 

10

12

14

16

8

6

4

2

1 2 3 4 5–2–3–4–5 –1

3. 

10

12

14

16

8

6

4

2

1 2 3 4 5–2–3–4–5

18

–1

4. 

10

12

14

16

8

6

4

2

1 2 3 4 5–2–3–4–5

18

–1
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5. 

20

24

28

32

16

12

8

4

1 2 3 4 5–2–3–4–5

36

40

44

48

–1

6. 

–20

–24

–28

–32

–16

–12

–8

–4
1 2 3 4 5–2–3–4–5

–36

–40

–44

–48

–1

7. 

10

12

14

16

8

6

4

2

1 2 3 4 5–2–3–4–5
–2

–1
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  8. 

1

2

3

1 2 3 4 5 6 7 8 9–2–3–8–9 –7 –6 –5 –4

–2

–3

–4

–5

–6

–7

–8

8

7

6

5

4

–1
–1

  9. 

10

12

14

16

8

6

4

2

1 2 3 4 5 6 7 8 9–2–3–4–5–6–7–8–9

18

–1

10. 

10

12

14

8

6

4

2

–2
1 2 3 4 5 6 7 8 9–2–3–4–5–6–7–8–9 –1
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16	 Matrix algebra

16·1	 1.  2 × 4		    4.  2 × 1
2.  1 × 4		    5.  3 × 3
3.  3 × 2		  

6. 

Tennis Golf Volleyball Softball Basketball
Equippment 24 15 2 7 3
Clothing 5 2 0 2 1
Accessories 0 3 1 5 0
Boooks 2 12 0 0 1













                        









16·2	 1. 
6 11
7 10









 				    6. 

1 01 4 12 3 04 2 12
4 36 4 20 3 54 0 28
. . . .
. . . .











2. 
1 3 15
9 1 3−









 			    7. 

8 5 4
5 3 3
3 8 8

















3.  [ ]10 6 8 3 2 10 3 		   8.  Cannot be subtracted

4.  Cannot be added			    9. 
− −
−

−

















6 5
16 2
1 6

5. 
4
5
5
6

















			   10. 

1
2
2
3



















16·3	 1. 
−

−










15 25
35 5

				      6.  3
1 3 4
5 2 6
2 1 3

2
2 6 3
4 5 1
0 6 3

7 2















+
















11 18
23 16 20
6 15 15

















2.  − − − 5 15 10 16 			     7.  −
















+ − −
















−2
3 2
5 1
0 3

7
2 5
1 2

3 0

8 31
177 16

21 6
−
−

















3. 
21 18 39
47 7 8 5.









 			     8.  Cannot be added

4. 
− −

−
















4 8 0 6
3 6 2 4
0 6 0

. .
. .

.
			     9. 

−
−
−

















9
6
6

5. 

40
45

52 5
20

.



















			   10. 
0 0 0 0 0
0 0 0 0 0










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11. 

12. 

13.   

14. 
Senior Junior Sophomore Freshman

$ . $ .2234 28 1143 112 1376 94 545 58$ . $ .









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16·4	 1.  2 × 3		  10.  Not possible
2.  Not possible		  11.  1 × 1
3.  Not possible		  12.  3 × 3
4.  3 × 2		  13.  Not possible
5.  2 × 2		  14.  [10]
6.  3 × 3		  15.  [−5]
7.   Not possible		  16.  Cannot be multiplied
8.  Not possible		  17.  [48  9]

9.  2 × 1		  18. 
10 6 2
2 4 22−











16·5	 1.  −4		     7.  7
2.  −22		    8.  0
3.  Not possible		    9.  3
4.  71		  10.  5
5.  Not possible		  11.  0
6.  1		

16·6	 1.  Inverses		    6.  Yes
2.  Not inverses		    7.  No, determinant = 0
3.  Not inverses		    8.  Yes

4.  Yes		    9. 

1
11

3
11

2
11

5
11

−

















5.  No, not square		  10. 

2
13

1
13

5
13

9
13

−

−



















16·7	 1.  x y= = −6 1, 		   3.  x y= − =0 5 1 3. , .

2.  x y= =4 1,

16·8	 1.  x y= = −6 1,  		    4.  x y= =3 1, 
2.  x y= =4 1,  		    5.  x y= = −7 3, 
3.  x y= − =0 5 1 3. ,  . 		    6.  x y= − =5 2, 
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